// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include "paddle/fluid/framework/generator.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/operator.h" #include "paddle/fluid/platform/enforce.h" namespace paddle { namespace operators { template class CPUDecodeJpegKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { // TODO(LieLinJiang): add cpu implement. PADDLE_THROW(platform::errors::Unimplemented( "DecodeJpeg op only supports GPU now.")); } }; class DecodeJpegOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override { OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "DecodeJpeg"); OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "DecodeJpeg"); auto mode = ctx->Attrs().Get("mode"); std::vector out_dims; if (mode == "unchanged") { out_dims = {-1, -1, -1}; } else if (mode == "gray") { out_dims = {1, -1, -1}; } else if (mode == "rgb") { out_dims = {3, -1, -1}; } else { PADDLE_THROW(platform::errors::Fatal( "The provided mode is not supported for JPEG files on GPU: ", mode)); } ctx->SetOutputDim("Out", framework::make_ddim(out_dims)); } protected: framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace()); } framework::OpKernelType GetKernelTypeForVar( const std::string& var_name, const framework::Tensor& tensor, const framework::OpKernelType& expected_kernel_type) const { if (var_name == "X") { return expected_kernel_type; } return framework::OpKernelType(tensor.type(), tensor.place(), tensor.layout()); } }; class DecodeJpegOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput("X", "A one dimensional uint8 tensor containing the raw bytes " "of the JPEG image. It is a tensor with rank 1."); AddOutput("Out", "The output tensor of DecodeJpeg op"); AddComment(R"DOC( This operator decodes a JPEG image into a 3 dimensional RGB Tensor or 1 dimensional Gray Tensor. Optionally converts the image to the desired format. The values of the output tensor are uint8 between 0 and 255. )DOC"); AddAttr( "mode", "(string, default \"unchanged\"), The read mode used " "for optionally converting the image, can be \"unchanged\" " ",\"gray\" , \"rgb\" .") .SetDefault("unchanged"); } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OPERATOR( decode_jpeg, ops::DecodeJpegOp, ops::DecodeJpegOpMaker, paddle::framework::EmptyGradOpMaker, paddle::framework::EmptyGradOpMaker) REGISTER_OP_CPU_KERNEL(decode_jpeg, ops::CPUDecodeJpegKernel)