Layers

fc

paddle.v2.fluid.layers.fc(input, size, num_flatten_dims=1, param_attr=None, bias_attr=None, act=None, name=None)

Fully Connected Layer

This layer accepts multiple inputs and applies a linear transformation to each input. If activation type is provided, the corresponding activation function is applied to the output of the linear transformation. For each input \(X\), the equation is:

\[Out = Act(WX + b)\]

In the above equation:

  • \(X\): Input value, a tensor with rank at least 2.
  • \(W\): Weight, a 2-D tensor with shape [M, N].
  • \(b\): Bias, a 2-D tensor with shape [M, 1].
  • \(Act\): Activation function.
  • \(Out\): Output value, same shape with \(X\).

All the input variables are passed in as local variables to the LayerHelper constructor.

Parameters:
  • input (Variable|list) – Input tensors. Each tensor has a rank of atleast 2
  • size (int) – Output size
  • num_flatten_dims (int) – Number of columns in input
  • param_attr (ParamAttr|list) – The parameters/weights to the FC Layer
  • bias_attr (ParamAttr|list) – Bias parameter for the FC layer
  • act (str) – Activation type
  • name (str) – Name/alias of the function
Returns:

The tensor variable storing the transformation and non-linearity activation result.

Return type:

Variable

Raises:

ValueError – If rank of input tensor is less than 2.

Examples

data = fluid.layers.data(name='data', shape=[32, 32], dtype='float32')
fc = fluid.layers.fc(input=data, size=1000, act="tanh")

embedding

paddle.v2.fluid.layers.embedding(input, size, is_sparse=False, param_attr=None, dtype='float32')

Embedding Layer

This layer is used to lookup a vector of IDs, provided by input, in a lookup table. The result of this lookup is the embedding of each ID in the input.

All the input variables are passed in as local variables to the LayerHelper constructor.

Parameters:
  • input (Variable) – Input to the function
  • size (tuple|list|None) – Shape of the look up table parameter
  • is_sparse (bool) – Boolean flag that specifying whether the input is sparse
  • param_attr (ParamAttr) – Parameters for this layer
  • dtype (np.dtype|core.DataType|str) – The type of data : float32, float_16, int etc
Returns:

The tensor variable storing the embeddings of the supplied inputs.

Return type:

Variable

Examples

data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
fc = fluid.layers.embedding(input=data, size=16)

dynamic_lstm

paddle.v2.fluid.layers.dynamic_lstm(input, size, param_attr=None, bias_attr=None, use_peepholes=True, is_reverse=False, gate_activation='sigmoid', cell_activation='tanh', candidate_activation='tanh', dtype='float32')

data

paddle.v2.fluid.layers.data(name, shape, append_batch_size=True, dtype='float32', lod_level=0, type=VarType.LOD_TENSOR, stop_gradient=True)

Data Layer.

Parameters:
  • name – The name/alias of the function
  • shape – Tuple declaring the shape.
  • append_batch_size – Whether or not to append the data as a batch.
  • dtype – The type of data : float32, float_16, int etc
  • type – The output type. By default it is LOD_TENSOR.
  • lod_level (int) – The LoD Level. 0 means the input data is not a sequence.
  • main_program – Name of the main program that calls this
  • startup_program – Name of the startup program
  • stop_gradient – A boolean that mentions whether gradient should flow.

This function takes in input and based on whether data has to be returned back as a minibatch, it creates the global variable using the helper functions. The global variables can be accessed by all the following operations and layers in the graph.

All the input variables of this function are passed in as local variables to the LayerHelper constructor.

mean

paddle.v2.fluid.layers.mean(**kwargs)

Mean Operator.

Out is a scalar which is the mean of all elements in X.

Parameters:x – The input of mean op Duplicable: False Optional: False
Returns:The output of mean op

mul

paddle.v2.fluid.layers.mul(**kwargs)

Mul Operator.

This operator is used to perform matrix multiplication for input X and Y.

The equation is:

$$Out = X * Y$$

Both the input X and Y can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input X.

Parameters:
  • x – The first input of mul op Duplicable: False Optional: False
  • y – The second input of mul op Duplicable: False Optional: False
  • x_num_col_dims (INT) – (int, default 1) mul_op can take tensors with more than two dimensions as input X, in that case, tensors will be reshaped to a matrix. The matrix’s first dimension(column length) will be the product of tensor’s last num_col_dims dimensions, and the matrix’s second dimension(row length) will be the product of tensor’s first rank - num_col_dims dimensions.
  • y_num_col_dims (INT) – (int, default 1) mul_op can take tensors with more than two dimensions as input Y, in that case, tensors will be reshaped to a matrix. Just like input X.
Returns:

The output of mul op

elementwise_add

paddle.v2.fluid.layers.elementwise_add(**kwargs)

Limited Elementwise Add Operator.

The equation is:

$Out = X + Y$

X is a tensor of any dimension and the dimensions of tensor Y must be smaller than or equal to the dimensions of X.

There are two cases for this operator: 1. The shape of Y is same with X; 2. The shape of Y is a subset of X.

For case 2: Y will be broadcasted to match the shape of X and axis should be the starting dimension index for broadcasting Y onto X.

example

shape(X) = (2, 3, 4, 5), shape(Y) = (,) shape(X) = (2, 3, 4, 5), shape(Y) = (5,) shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5) shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1 shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0

Both the input X and Y can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input X.

Parameters:
  • x – (Tensor) The first input tensor of elementwise op Duplicable: False Optional: False
  • y – (Tensor) The second input tensor of elementwise op Duplicable: False Optional: False
  • axis (INT) – (int, default -1) The starting dimension index for broadcasting Y onto X
Returns:

The output of elementwise op

elementwise_div

paddle.v2.fluid.layers.elementwise_div(**kwargs)

Limited Elementwise Div Operator.

The equation is:

$Out = X / Y$

X is a tensor of any dimension and the dimensions of tensor Y must be smaller than or equal to the dimensions of X.

There are two cases for this operator: 1. The shape of Y is same with X; 2. The shape of Y is a subset of X.

For case 2: Y will be broadcasted to match the shape of X and axis should be the starting dimension index for broadcasting Y onto X.

example

shape(X) = (2, 3, 4, 5), shape(Y) = (,) shape(X) = (2, 3, 4, 5), shape(Y) = (5,) shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5) shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1 shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0

Both the input X and Y can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input X.

Parameters:
  • x – (Tensor) The first input tensor of elementwise op Duplicable: False Optional: False
  • y – (Tensor) The second input tensor of elementwise op Duplicable: False Optional: False
  • axis (INT) – (int, default -1) The starting dimension index for broadcasting Y onto X
Returns:

The output of elementwise op

dropout

paddle.v2.fluid.layers.dropout(**kwargs)

Dropout Operator.

Dropout refers to randomly dropping out units in a nerual network. It is a regularization technique for reducing overfitting by preventing neuron co-adaption during training. The dropout operator randomly set (according to the given dropout probability) the outputs of some units to zero, while others are set equal to their corresponding inputs.

Parameters:
  • x – The input of dropout op. Duplicable: False Optional: False
  • dropout_prob (FLOAT) – Probability of setting units to zero.
  • is_test (BOOLEAN) – True if in test phase.
  • seed (INT) – Dropout random seed.
Returns:

The output of dropout op.

reshape

paddle.v2.fluid.layers.reshape(**kwargs)

Reshape Operator.

Reshape Input(X) into the shape specified by Attr(shape).

An example: Given a 2-D tensor X with 2 rows and 2 columns

[[1, 2], [3, 4]]

and target shape = [1, 4], the reshape operator will transform the tensor X into a 2-D tensor:

[[1, 2, 3, 4]]

One dimension in the target shape can be set -1, representing that its size is unknown. In this case, the real dimension will be infered from the original shape of Input(X) and other dimensions in the target shape.

Parameters:
  • x – The input tensor of reshape operator. Duplicable: False Optional: False
  • shape (INTS) – (vector<int>) Target shape of reshape operator.
Returns:

The output tensor of reshape operator.

sigmoid

paddle.v2.fluid.layers.sigmoid(**kwargs)

Sigmoid Activation Operator

$$y = frac{1}{1 + e^{-x}}$$

Parameters:x – Input of Sigmoid operator Duplicable: False Optional: False
Returns:Output of Sigmoid operator

scale

paddle.v2.fluid.layers.scale(**kwargs)

Scale operator

$$Out = scale*X$$

Parameters:
  • x – (Tensor) Input tensor of scale operator. Duplicable: False Optional: False
  • scale (FLOAT) – (float, default 0)The scaling factor of the scale operator.
Returns:

(Tensor) Output tensor of scale operator.

reshape

paddle.v2.fluid.layers.reshape(**kwargs)

Reshape Operator.

Reshape Input(X) into the shape specified by Attr(shape).

An example: Given a 2-D tensor X with 2 rows and 2 columns

[[1, 2], [3, 4]]

and target shape = [1, 4], the reshape operator will transform the tensor X into a 2-D tensor:

[[1, 2, 3, 4]]

One dimension in the target shape can be set -1, representing that its size is unknown. In this case, the real dimension will be infered from the original shape of Input(X) and other dimensions in the target shape.

Parameters:
  • x – The input tensor of reshape operator. Duplicable: False Optional: False
  • shape (INTS) – (vector<int>) Target shape of reshape operator.
Returns:

The output tensor of reshape operator.

transpose

paddle.v2.fluid.layers.transpose(**kwargs)

Transpose Operator.

The input tensor will be permuted according to the axis values given. The op functions similar to how numpy.transpose works in python. For example:

>> input = numpy.arange(6).reshape((2,3)) >> input array([[0, 1, 2],

[3, 4, 5]])

>> axis = [1, 0] >> output = input.transpose(axis) >> output array([[0, 3],

[1, 4],
[2, 5]])

So, given a input tensor of shape(N, C, H, W) and the axis is {0, 2, 3, 1}, the output tensor shape will be (N, H, W, C)

Parameters:
  • x – (Tensor)The input tensor, tensors with rank at most 6 are supported Duplicable: False Optional: False
  • axis (INTS) – (vector<int>)A list of values, and the size of the list should be the same with the input tensor rank, the tensor will permute the axes according the the values given
Returns:

(Tensor)The output tensor

sigmoid_cross_entropy_with_logits

cast

paddle.v2.fluid.layers.cast(x, dtype)

This function takes in the input with input_dtype and casts it to the output_dtype as the output.

concat

paddle.v2.fluid.layers.concat(input, axis=0)

Concat

This function concatenates the input along the axis mentioned and returns that as the output.

Parameters:
  • input (list) – List of tensors to be concatenated
  • axis (int) – Integer axis along which the tensors will be concatenated
Returns:

Output variable of the concatenation

Return type:

Variable

Examples

sums

paddle.v2.fluid.layers.sums(input, out=None)

This function takes in the input and performs the sum operation on it and returns that as the output.

linear_chain_crf

paddle.v2.fluid.layers.linear_chain_crf(input, label, param_attr=None)

assign

paddle.v2.fluid.layers.embedding(input, size, is_sparse=False, param_attr=None, dtype='float32')

Embedding Layer

This layer is used to lookup a vector of IDs, provided by input, in a lookup table. The result of this lookup is the embedding of each ID in the input.

All the input variables are passed in as local variables to the LayerHelper constructor.

Parameters:
  • input (Variable) – Input to the function
  • size (tuple|list|None) – Shape of the look up table parameter
  • is_sparse (bool) – Boolean flag that specifying whether the input is sparse
  • param_attr (ParamAttr) – Parameters for this layer
  • dtype (np.dtype|core.DataType|str) – The type of data : float32, float_16, int etc
Returns:

The tensor variable storing the embeddings of the supplied inputs.

Return type:

Variable

Examples

data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
fc = fluid.layers.embedding(input=data, size=16)

split_lod_tensor

paddle.v2.fluid.layers.split_lod_tensor(input, mask, level=0)

merge_lod_tensor

paddle.v2.fluid.layers.merge_lod_tensor(in_true, in_false, x, mask, level=0)

cos_sim

paddle.v2.fluid.layers.cos_sim(X, Y, **kwargs)

This function performs the cosine similarity between two tensors X and Y and returns that as the output.

cross_entropy

paddle.v2.fluid.layers.cross_entropy(input, label, **kwargs)

This function computes cross_entropy using the input and label.

square_error_cost

paddle.v2.fluid.layers.square_error_cost(input, label, **kwargs)

This functions returns the squared error cost using the input and label. The output is appending the op to do the above.

accuracy

paddle.v2.fluid.layers.accuracy(input, label, k=1, correct=None, total=None, **kwargs)

This function computes the accuracy using the input and label. The output is the top_k inputs and their indices.

sequence_conv

paddle.v2.fluid.layers.sequence_conv(input, num_filters, filter_size=3, filter_stride=1, padding=None, bias_attr=None, param_attr=None, act=None)

This function creates the op for sequence_conv, using the inputs and other convolutional configurations for the filters and stride as given in the input parameters to the function.

conv2d

paddle.v2.fluid.layers.conv2d(input, num_filters, filter_size, stride=None, padding=None, groups=None, param_attr=None, bias_attr=None, act=None, name=None)

This function creates the op for a 2-dimensional Convolution. This is performed using the parameters of filters(size, dimensionality etc) , stride and other configurations for a Convolution operation. This funciton can also append an activation on top of the conv-2d output, if mentioned in the input parameters.

sequence_pool

paddle.v2.fluid.layers.sequence_pool(input, pool_type, **kwargs)

This function add the operator for sequence pooling. This is applied on top of the input using pool_type mentioned in the parameters.

pool2d

paddle.v2.fluid.layers.pool2d(input, pool_size, pool_type, pool_stride=None, pool_padding=None, global_pooling=False)

This function adds the operator for pooling in 2 dimensions, using the pooling configurations mentioned in input parameters.

batch_norm

paddle.v2.fluid.layers.batch_norm(input, act=None, is_test=False, momentum=0.9, epsilon=1e-05, param_attr=None, bias_attr=None, data_layout='NCHW')

This function helps create an operator to implement the BatchNorm layer using the configurations from the input parameters.

beam_search_decode

paddle.v2.fluid.layers.beam_search_decode(ids, scores)

lod_rank_table

paddle.v2.fluid.layers.lod_rank_table(x, level=0)

This function creates an operator for creating a LOD_RANK_TABLE using the input x.

max_sequence_len

paddle.v2.fluid.layers.max_sequence_len(rank_table)

This function creates an operator to calculate the length of max seqence through input rank_table(should be a lod_rank_table)

topk

paddle.v2.fluid.layers.topk(input, k)

lod_tensor_to_array

paddle.v2.fluid.layers.lod_tensor_to_array(x, table)
This function performs the operation that converts an LOD_Tensor to
an array.
Parameters:
  • x (Variable|list) – The tensor that needs to be converted to an array.
  • table (ParamAttr|list) – The variable that stores the level of lod which is ordered by sequence length in descending order.
Returns:

The variable of type array that has been converted from a

tensor.

Return type:

Variable

Examples

x = fluid.layers.data(name='x', shape=[10])
table = fluid.layers.lod_rank_table(x, level=0)
array = fluid.layers.lod_tensor_to_array(x, table)

array_to_lod_tensor

paddle.v2.fluid.layers.array_to_lod_tensor(x, table)
This function performs the operations that converts an array to
an LOD_Tensor.
Parameters:
  • x (Variable|list) – The array that needs to be converted to a tensor.
  • table (ParamAttr|list) – The variable that stores the level of lod which is ordered by sequence length in descending order.
Returns:

The variable of type tensor that has been converted

from an array.

Return type:

Variable

Examples

x = fluid.layers.data(name='x', shape=[10])
table = fluid.layers.lod_rank_table(x, level=0)
array = fluid.layers.lod_tensor_to_array(x, table)
lod_tensor = fluid.layers.array_to_lod_tensor(array, table)

fill_constant

paddle.v2.fluid.layers.fill_constant(shape, dtype, value, out=None)

fill_constant

This function creates a tensor of specified shape and dtype, and initializes this with a constant supplied in value.

It also sets stop_gradient to True.

Parameters:
  • shape (tuple|list|None) – Shape of output tensor
  • dtype (np.dtype|core.DataType|str) – Data type of output tensor
  • value (float) – Constant value to initialize the output tensor
  • out (Variable) – Output Variable to initialize
Returns:

The tensor variable storing the output

Return type:

Variable

Examples

data = fluid.layers.fill_constant(shape=[1], value=0, dtype='int64')

fill_constant_batch_size_like

paddle.v2.fluid.layers.fill_constant_batch_size_like(input, shape, dtype, value, input_dim_idx=0, output_dim_idx=0)

fill_constant_batch_size_like

This function creates a tensor of specified shape, dtype and batch size, and initializes this with a constant supplied in value. The batch size is obtained from the input tensor.

It also sets stop_gradient to True.

Parameters:
  • input (Variable) – Tensor whose dimensions will be used to get batch size
  • shape (tuple|list|None) – Shape of output tensor
  • dtype (np.dtype|core.DataType|str) – Data type of output tensor
  • value (float) – Constant value to initialize the output tensor
  • input_dim_idx (int) – Index of input’s batch size dimension
  • output_dim_idx (int) – Index of output’s batch size dimension
Returns:

The tensor variable storing the output

Return type:

Variable

Examples

data = fluid.layers.fill_constant(shape=[1], value=0, dtype='int64')

ones

paddle.v2.fluid.layers.ones(shape, dtype)

This function performs the same function as fill_constant() declared above with the constant value being 1.0.

zeros

paddle.v2.fluid.layers.zeros(shape, dtype)

This function performs the same function as fill_constant() declared above with the constant value being 0.0.

increment

paddle.v2.fluid.layers.increment(x, value=1.0, in_place=True)

This function performs an operation that increments each value in the input \(x\) by an amount: \(value\) as mentioned in the input parameter. This operation is performed in-place by default.

Parameters:
  • x (Variable|list) – The tensor that has the input values.
  • value (float) – The amount by which the values should be incremented.
  • in_place (bool) – If the increment should be performed in-place.
Returns:

The tensor variable storing the transformation of

element-wise increment of each value in the input.

Return type:

Variable

Examples

data = fluid.layers.data(name='data', shape=[32, 32], dtype='float32')
data = fluid.layers.increment(x=data, value=3.0, in_place=True)

array_write

paddle.v2.fluid.layers.array_write(x, i, array=None)

This function performs the operation to write the data out as an LOD_TENSOR_ARRAY.

Parameters:
  • x (Variable|list) – The input tensor from which the data will be read.
  • i (Variable|list) – The subscript index in tensor array, that points the place from which data will be read.
  • array (Variable|list) – The data can be read into this variable if this is assigned.
Returns:

The tensor type variable that has the data written to it.

Return type:

Variable

Examples

create_array

paddle.v2.fluid.layers.create_array(dtype)

This function creates an array of type \(LOD_TENSOR_ARRAY\) using the LayerHelper.

Parameters:dtype (int|float) – The data type of the elements in the array.
Returns:The tensor variable storing the elements of data type.
Return type:Variable

Examples

data = fluid.layers.create_array(dtype='float32')

less_than

paddle.v2.fluid.layers.less_than(x, y, cond=None, **ignored)

Less than

This layer returns the truth value of \(x < y\) elementwise.

Parameters:
  • x (Variable) – First operand of less_than
  • y (Variable) – Second operand of less_than
  • cond (Variable|None) – Optional output variable to store the result of less_than
Returns:

The tensor variable storing the output of less_than.

Return type:

Variable

Examples

less = fluid.layers.less_than(x=label, y=limit)

array_read

paddle.v2.fluid.layers.array_read(array, i)

This function performs the operation to read the data in as an LOD_TENSOR_ARRAY. :param array: The input tensor that will be written to an array. :type array: Variable|list :param i: The subscript index in tensor array, that points the

place where data will be written to.
Returns:The tensor type variable that has the data written to it.
Return type:Variable

Examples

shrink_memory

paddle.v2.fluid.layers.shrink_memory(x, i, table)

This function creates an operator to shrink_rnn_memory using the RankTable as mentioned in the input parameter.

array_length

paddle.v2.fluid.layers.array_length(array)

This function performs the operation to find the length of the input LOD_TENSOR_ARRAY.

Parameters:array (LOD_TENSOR_ARRAY) – The input array that will be used to compute the length.
Returns:The length of the input LoDTensorArray.
Return type:Variable

Examples

conv2d_transpose

paddle.v2.fluid.layers.conv2d_transpose(input, num_filters, output_size=None, filter_size=None, padding=None, stride=None, dilation=None, param_attr=None)

The transpose of conv2d layer.

This layer is also known as deconvolution layer.

Parameters:
  • input (Variable) – The input image with [N, C, H, W] format.
  • num_filters (int) – The number of filter. It is as same as the output image channel.
  • output_size (int|tuple|None) – The output image size. If output size is a tuple, it must contain two integers, (image_H, image_W). This parameter only works when filter_size is None.
  • filter_size (int|tuple|None) – The filter size. If filter_size is a tuple, it must contain two integers, (filter_size_H, filter_size_W). Otherwise, the filter will be a square. None if use output size to calculate filter_size
  • padding (int|tuple) – The padding size. If padding is a tuple, it must contain two integers, (padding_H, padding_W). Otherwise, the padding_H = padding_W = padding.
  • stride (int|tuple) – The stride size. If stride is a tuple, it must contain two integers, (stride_H, stride_W). Otherwise, the stride_H = stride_W = stride.
  • dilation (int|tuple) – The dilation size. If dilation is a tuple, it must contain two integers, (dilation_H, dilation_W). Otherwise, the dilation_H = dilation_W = dilation.
  • param_attr – Parameter Attribute.
  • main_program (Program) – the main program
  • startup_program (Program) – the startup program
Returns:

Output image.

Return type:

Variable

sequence_expand

paddle.v2.fluid.layers.sequence_expand(x, y)

Sequence Expand Layer. This layer will expand the input variable x according to LoD information of y. And the following examples will explain how sequence_expand works:

* Case 1
    x is a LoDTensor:
        x.lod = [[0,       2, 3],
                 [0, 1,    3, 4]]
        x.data = [a, b, c, d]
        x.dims = [4, 1]

    y is a LoDTensor:
        y.lod = [[0,    2,    4],
                 [0, 3, 6, 7, 8]]

    with condition len(y.lod[-1]) - 1 == x.dims[0]

    then output is a 2-level LoDTensor:
        out.lod = [[0,                2,    4],
                   [0,       3,       6, 7, 8]]
        out.data = [a, a, a, b, b, b, c, d]
        out.dims = [8, 1]

* Case 2
    x is a Tensor:
        x.data = [a, b, c]
        x.dims = [3, 1]

    y is a LoDTensor:
        y.lod = [[0, 2, 3, 6]]

    with condition len(y.lod[-1]) - 1 == x.dims[0]

    then output is a 1-level LoDTensor:
        out.lod = [[0,    2, 3,      6]]
        out.data = [a, a, b, c, c, c]
        out.dims = [6, 1]
Parameters:
  • x (Variable) – The input variable which is a Tensor or LoDTensor.
  • y (Variable) – The input variable which is a LoDTensor.
Returns:

The expanded variable which is a LoDTensor.

Return type:

Variable

Examples

x = fluid.layers.data(name='x', shape=[10], dtype='float32')
y = fluid.layers.data(name='y', shape=[10, 20],
                 dtype='float32', lod_level=1)
out = layers.sequence_expand(x=x, y=y)

lstm_unit

paddle.v2.fluid.layers.lstm_unit(x_t, hidden_t_prev, cell_t_prev, forget_bias=0.0, param_attr=None, bias_attr=None)

Lstm unit layer. The equation of a lstm step is:

\[ \begin{align}\begin{aligned}i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + W_{c_i}c_{t-1} + b_i)\\f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + W_{c_f}c_{t-1} + b_f)\\c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t+W_{h_c}h_{t-1} + b_c)\\o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + W_{c_o}c_t + b_o)\\h_t & = o_t tanh(c_t)\end{aligned}\end{align} \]

The inputs of lstm unit includes \(x_t\), \(h_{t-1}\) and \(c_{t-1}\). The implementation separates the linear transformation and non-linear transformation apart. Here, we take \(i_t\) as an example. The linear transformation is applied by calling a fc layer and the equation is:

\[L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + W_{c_i}c_{t-1} + b_i\]

The non-linear transformation is applied by calling lstm_unit_op and the equation is:

\[i_t = \sigma(L_{i_t})\]

This layer has two outputs including \(h_t\) and \(o_t\).

Parameters:
  • x_t (Variable) – The input value of current step.
  • hidden_t_prev (Variable) – The hidden value of lstm unit.
  • cell_t_prev (Variable) – The cell value of lstm unit.
  • forget_bias (float) – The forget bias of lstm unit.
  • param_attr (ParamAttr) – The attributes of parameter weights, used to set initializer, name etc.
  • bias_attr (ParamAttr) – The attributes of bias weights, if not False, bias weights will be created and be set to default value.
Returns:

The hidden value and cell value of lstm unit.

Return type:

tuple

Raises:

ValueError – The ranks of x_t, hidden_t_prev and cell_t_prev not be 2 or the 1st dimensions of x_t, hidden_t_prev and cell_t_prev not be the same.

Examples

x_t = fluid.layers.fc(input=x_t_data, size=10)
prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=20)
prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
                                       hidden_t_prev=prev_hidden,
                                       cell_t_prev=prev_cell)

sequence_softmax

paddle.v2.fluid.layers.sequence_softmax(**kwargs)

Sequence Softmax Operator.

SequenceSoftmaxOp computes the softmax activation among all time-steps for each sequence. The dimension of each time-step should be 1. Thus, the shape of input Tensor can be either [N, 1] or [N], where N is the sum of the length of all sequences.

The algorithm works as follows:

for i-th sequence in a mini-batch:

$$ Out(X[lod[i]:lod[i+1]], :) = frac{exp(X[lod[i]:lod[i+1], :])} {sum(exp(X[lod[i]:lod[i+1], :]))} $$

For example, for a mini-batch of 3 sequences with variable-length, each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7], then softmax will be computed among X[0:2, :], X[2:5, :], X[5:7, :] and N turns out to be 7.

Parameters:x – (LoDTensor) 1-D or 2-D input LoDTensor with the 2-nd dimension of length 1. Duplicable: False Optional: False
Returns:(LoDTensor) 1-D or 2-D output LoDTensor with the 2-nd dimension of length 1.

reduce_sum

paddle.v2.fluid.layers.reduce_sum(input, dim=None, keep_dim=False)

Computes the sum of tensor elements over the given dimension.

Parameters:
  • input (Variable) – The input variable which is a Tensor or LoDTensor.
  • dim (int|None) – The dimension along which the sum is performed. If None, sum all elements of input and return a Tensor variable with a single element, otherwise must be in the range \([-rank(input), rank(input))\). If \(dim < 0\), the dimension to reduce is \(rank + dim\).
  • keep_dim (bool) – Whether to reserve the reduced dimension in the output Tensor. The result tensor will have one fewer dimension than the input unless keep_dim is true.
Returns:

The reduced Tensor variable.

Return type:

Variable

Examples

# x is a Tensor variable with following elements:
#    [[0.2, 0.3, 0.5, 0.9]
#     [0.1, 0.2, 0.6, 0.7]]
# Each example is followed by the correspending output tensor.
fluid.layers.reduce_sum(x)  # [3.5]
fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]