# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # TODO: define the functions to manipulate devices import re import os from paddle.fluid import core from paddle.fluid import framework from paddle.fluid.dygraph.parallel import ParallelEnv from paddle.fluid.framework import is_compiled_with_cuda #DEFINE_ALIAS __all__ = [ 'get_cudnn_version', 'set_device', 'get_device', 'XPUPlace', 'is_compiled_with_xpu', # 'cpu_places', # 'CPUPlace', # 'cuda_pinned_places', # 'cuda_places', # 'CUDAPinnedPlace', # 'CUDAPlace', 'is_compiled_with_cuda', 'is_compiled_with_npu' ] _cudnn_version = None # TODO: WITH_ASCEND_CL may changed to WITH_NPU or others in the future # for consistent. def is_compiled_with_npu(): """ Whether paddle was built with WITH_ASCEND_CL=ON to support Ascend NPU. Returns (bool): `True` if NPU is supported, otherwise `False`. Examples: .. code-block:: python import paddle support_npu = paddle.is_compiled_with_npu() """ return core.is_compiled_with_npu() def is_compiled_with_xpu(): """ Whether paddle was built with WITH_XPU=ON to support Baidu Kunlun Returns (bool): whether paddle was built with WITH_XPU=ON Examples: .. code-block:: python import paddle support_xpu = paddle.device.is_compiled_with_xpu() """ return core.is_compiled_with_xpu() def XPUPlace(dev_id): """ Return a Baidu Kunlun Place Parameters: dev_id(int): Baidu Kunlun device id Examples: .. code-block:: python import paddle place = paddle.device.XPUPlace(0) """ return core.XPUPlace(dev_id) def get_cudnn_version(): """ This funciton return the version of cudnn. the retuen value is int which represents the cudnn version. For example, if it return 7600, it represents the version of cudnn is 7.6. Returns: int: A int value which represents the cudnn version. If cudnn version is not installed, it return None. Examples: .. code-block:: python import paddle cudnn_version = paddle.get_cudnn_version() """ global _cudnn_version if not core.is_compiled_with_cuda(): return None if _cudnn_version is None: cudnn_version = int(core.cudnn_version()) _cudnn_version = cudnn_version if _cudnn_version < 0: return None else: return cudnn_version else: return _cudnn_version def _convert_to_place(device): lower_device = device.lower() if lower_device == 'cpu': place = core.CPUPlace() elif lower_device == 'gpu': if not core.is_compiled_with_cuda(): raise ValueError( "The device should not be 'gpu', " \ "since PaddlePaddle is not compiled with CUDA") place = core.CUDAPlace(ParallelEnv().dev_id) elif lower_device == 'xpu': if not core.is_compiled_with_xpu(): raise ValueError( "The device should not be 'xpu', " \ "since PaddlePaddle is not compiled with XPU") selected_xpus = os.getenv("FLAGS_selected_xpus", "0").split(",") device_id = int(selected_xpus[0]) place = core.XPUPlace(device_id) else: avaliable_gpu_device = re.match(r'gpu:\d+', lower_device) avaliable_xpu_device = re.match(r'xpu:\d+', lower_device) if not avaliable_gpu_device and not avaliable_xpu_device: raise ValueError( "The device must be a string which is like 'cpu', 'gpu', 'gpu:x', 'xpu' or 'xpu:x'" ) if avaliable_gpu_device: if not core.is_compiled_with_cuda(): raise ValueError( "The device should not be {}, since PaddlePaddle is " \ "not compiled with CUDA".format(avaliable_gpu_device)) device_info_list = device.split(':', 1) device_id = device_info_list[1] device_id = int(device_id) place = core.CUDAPlace(device_id) if avaliable_xpu_device: if not core.is_compiled_with_xpu(): raise ValueError( "The device should not be {}, since PaddlePaddle is " \ "not compiled with XPU".format(avaliable_xpu_device)) device_info_list = device.split(':', 1) device_id = device_info_list[1] device_id = int(device_id) place = core.XPUPlace(device_id) return place def set_device(device): """ Paddle supports running calculations on various types of devices, including CPU, GPU and XPU. They are represented by string identifiers. This function can specify the global device which the OP will run. Parameters: device(str): This parameter determines the specific running device. It can be ``cpu``, ``gpu:x`` and ``xpu:x``, where ``x`` is the index of the GPUs or XPUs. Examples: .. code-block:: python import paddle paddle.set_device("cpu") x1 = paddle.ones(name='x1', shape=[1, 2], dtype='int32') x2 = paddle.zeros(name='x2', shape=[1, 2], dtype='int32') data = paddle.stack([x1,x2], axis=1) """ place = _convert_to_place(device) framework._set_expected_place(place) return place def get_device(): """ This funciton can get the current global device of the program is running. It's a string which is like 'cpu', 'gpu:x' and 'xpu:x'. if the global device is not set, it will return a string which is 'gpu:x' when cuda is avaliable or it will return a string which is 'cpu' when cuda is not avaliable. Examples: .. code-block:: python import paddle device = paddle.get_device() """ device = '' place = framework._current_expected_place() if isinstance(place, core.CPUPlace): device = 'cpu' elif isinstance(place, core.CUDAPlace): device_id = place.get_device_id() device = 'gpu:' + str(device_id) elif isinstance(place, core.XPUPlace): device_id = place.get_device_id() device = 'xpu:' + str(device_id) return device