# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle from paddle import fluid BATCH_SIZE = 128 CLIP_MAX = 2e-6 CLIP_MIN = -1e-6 paddle.enable_static() prog = fluid.framework.Program() with fluid.program_guard(main_program=prog): image = paddle.static.data(name='x', shape=[-1, 784], dtype='float32') hidden1 = paddle.static.nn.fc(x=image, size=128, activation='relu') hidden2 = paddle.static.nn.fc(x=hidden1, size=64, activation='relu') predict = paddle.static.nn.fc(x=hidden2, size=10, activation='softmax') label = paddle.static.data(name='y', shape=[-1, 1], dtype='int64') cost = paddle.nn.functional.cross_entropy( input=predict, label=label, reduction='none', use_softmax=False ) avg_cost = paddle.mean(cost) prog_clip = prog.clone() prog_clip.block(0).var(hidden1.name)._set_error_clip( paddle.nn.clip.ErrorClipByValue(max=CLIP_MAX, min=CLIP_MIN) ) avg_cost_clip = prog_clip.block(0).var(avg_cost.name) fluid.backward.append_backward(loss=avg_cost) fluid.backward.append_backward( loss=avg_cost_clip, callbacks=[paddle.nn.clip.error_clip_callback] ) hidden1_grad = prog.block(0).var(hidden1.name + "@GRAD") hidden1_grad_clip = prog_clip.block(0).var(hidden1.name + "@GRAD") hidden2_grad = prog.block(0).var(hidden2.name + "@GRAD") hidden2_grad_clip = prog_clip.block(0).var(hidden2.name + "@GRAD") train_reader = paddle.batch( paddle.reader.shuffle(paddle.dataset.mnist.train(), buf_size=8192), batch_size=BATCH_SIZE, ) place = fluid.CPUPlace() exe = fluid.Executor(place) feeder = fluid.DataFeeder(feed_list=[image, label], place=place) exe.run(fluid.default_startup_program()) count = 0 for data in train_reader(): count += 1 if count > 5: break out1, out2 = exe.run( prog, feed=feeder.feed(data), fetch_list=[hidden1_grad, hidden2_grad] ) out1_clip, out2_clip = exe.run( prog_clip, feed=feeder.feed(data), fetch_list=[hidden1_grad_clip, hidden2_grad_clip], ) if not ( (out1.clip(min=CLIP_MIN, max=CLIP_MAX) == out1_clip).all() and (out2 == out2_clip).all() ): exit(1) exit(0)