# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import collections from functools import reduce from itertools import product import paddle from paddle.distributed.utils.nccl_utils import check_nccl_version_for_p2p from ..utils.log_util import logger __all__ = ['CommunicateTopology', 'HybridCommunicateGroup'] _HYBRID_PARALLEL_GROUP = None class ParallelMode: """ There are all the parallel modes currently supported: - DATA_PARALLEL: Distribute input data to different devices. - TENSOR_PARALLEL: Shards tensors in the network to different devices. - PIPELINE_PARALLEL: Place different layers of the network on different devices. - SHARDING_PARALLEL: Segment the model parameters, parameter gradients and optimizer states corresponding to the parameters to each device. Examples: .. code-block:: python import paddle parallel_mode = paddle.distributed.ParallelMode print(parallel_mode.DATA_PARALLEL) # 0 """ DATA_PARALLEL = 0 TENSOR_PARALLEL = 1 PIPELINE_PARALLEL = 2 SHARDING_PARALLEL = 3 class CommunicateTopology: def __init__( self, hybrid_group_names=["data", "pipe", "sharding", "model"], dims=[1, 1, 1, 1], ): self._parallel_names = hybrid_group_names self._dims = dims self.coordinate = collections.namedtuple( 'Coordinate', self._parallel_names ) self._world_size = reduce(lambda x, y: x * y, self._dims, 1) ranges = [range(d) for d in self._dims] all_coordinate = [self.coordinate(*x) for x in product(*ranges)] self._coord2rank = dict(zip(all_coordinate, range(len(all_coordinate)))) self._rank2coord = dict( zip(self._coord2rank.values(), self._coord2rank.keys()) ) def get_hybrid_group_names(self): return self._parallel_names def get_dim(self, axis_name): return self._dims[self._parallel_names.index(axis_name)] def world_size(self): return self._world_size def get_rank(self, **args): assert len(args) == len(self._dims) key = self.coordinate(**args) assert key in self._coord2rank.keys() return self._coord2rank[key] def get_coord(self, rank): assert rank < self._world_size assert rank in self._rank2coord.keys() return self._rank2coord[rank] def get_axis_list(self, axis_name, index): axis = self._parallel_names.index(axis_name) ranks = [ self._coord2rank[coord] for coord in self._coord2rank.keys() if coord[axis] == index ] ranks.sort() return ranks def get_dim_size(self, axis_name): assert axis_name in self._parallel_names return self._dims[self._parallel_names.index(axis_name)] def get_comm_list(self, axis_name): assert axis_name in self._parallel_names other_axis_names = [ name for name in self._parallel_names if name != axis_name ] ranges = [] for name in other_axis_names: dim_num = self.get_dim_size(name) ranges.append(range(dim_num)) all_result = [] for x in product(*ranges): key_coord = {} for other_name in other_axis_names: key_coord[other_name] = x[other_axis_names.index(other_name)] result = [] for i in range(0, self.get_dim_size(axis_name)): key_coord[axis_name] = i result.append(self._coord2rank[self.coordinate(**key_coord)]) all_result.append(result) return all_result def get_rank_from_stage(self, global_rank, **kwargs): coord = self.get_coord(global_rank) tf = coord._replace(**kwargs)._asdict() return self.get_rank(**tf) class HybridCommunicateGroup: def __init__(self, topology): self.nranks = paddle.distributed.get_world_size() self.global_rank = paddle.distributed.get_rank() self._topo = topology self._dp_degree = self._topo.get_dim('data') self._mp_degree = self._topo.get_dim('model') self._pp_degree = self._topo.get_dim('pipe') self._sharding_degree = self._topo.get_dim('sharding') self._data_parallel_id = self._get_data_parallel_id() self._model_parallel_id = self._get_model_parallel_id() self._sharding_parallel_id = self._get_sharding_parallel_id() self.stage_id = self._get_pipe_parallel_id() assert self._check_vaild_topo(), ( "Here is an unreasonable topogy setting. world_size: {}, but" "mp_num: {}, sharding_num: {}, pp_num: {}, dp_num: {}".format( self.nranks, self._mp_degree, self._sharding_degree, self._pp_degree, self._dp_degree, ) ) # create comm group for data parallel self._dp_group, self._dp_comm_group = self._set_comm_group("data") # create comm group for model parallel self._mp_group, self._mp_comm_group = self._set_comm_group("model") # create comm group for pipe parallel self._pp_group, self._pp_comm_group = self._set_comm_group("pipe") # create comm group for sharding parallel self._sharding_group, self._sharding_comm_group = self._set_comm_group( "sharding" ) # create global group for check inf_nan / clip global norm self._check_group, self._check_comm_group = self._set_check_group( "data" ) # create p2p group self.is_first_stage = self.stage_id == 0 self.is_last_stage = self.stage_id == (self._pp_degree - 1) # create p2p_groups if self._pp_degree > 1: if paddle.framework.core.is_compiled_with_nccl(): check_nccl_version_for_p2p() self._set_p2p_group() debug_str = ( "HybridParallelInfo: rank_id: %d, mp_degree: %d, " "sharding_degree: %d, pp_degree: %d, dp_degree: %d" % ( self.global_rank, self._mp_degree, self._sharding_degree, self._pp_degree, self._dp_degree, ) ) debug_str += ( ", mp_group: %s, sharding_group: %s, pp_group: %s, dp_group: %s, check/clip group: %s" % ( self._mp_group, self._sharding_group, self._pp_group, self._dp_group, self._check_group, ) ) logger.info(debug_str) global _HYBRID_PARALLEL_GROUP _HYBRID_PARALLEL_GROUP = self def get_parallel_mode(self): # there are four modes : DataParallel / TensorParallel / PipelineParallel / ShardingParallel # NOTE when sharding conjugates with other parallel, sharding should act like a optimizer and # adding its parallel logic within that parallelism # when use sharding alone, it should have its own parallelism for its parallel logic # TODO modify 3 others parallel to support sharding if ( self._mp_degree == 1 and self._pp_degree == 1 and self._dp_degree == 1 and self._sharding_degree > 1 ): return ParallelMode.SHARDING_PARALLEL elif self._mp_degree == 1 and self._pp_degree == 1: return ParallelMode.DATA_PARALLEL elif self._mp_degree > 1 and self._pp_degree == 1: # initialize the seed return ParallelMode.TENSOR_PARALLEL elif self._pp_degree > 1: return ParallelMode.PIPELINE_PARALLEL def _check_vaild_topo(self): return ( self._dp_degree * self._mp_degree * self._pp_degree * self._sharding_degree == self.nranks ) def _set_comm_group(self, parallel_method="data"): parallel_group = [] parallel_comm_group = None parallel_groups = self._topo.get_comm_list(parallel_method) for group in parallel_groups: comm_group = paddle.distributed.new_group(ranks=group) if self.global_rank in group: parallel_group = group parallel_comm_group = comm_group assert len(parallel_group) > 0 assert parallel_comm_group is not None return parallel_group, parallel_comm_group def _set_check_group(self, parallel_method="data"): parallel_group = [] parallel_comm_group = None parallel_size = self._topo.get_dim(parallel_method) for idx in range(parallel_size): parallel_groups = self._topo.get_axis_list(parallel_method, idx) comm_group = paddle.distributed.new_group(ranks=parallel_groups) if self.global_rank in parallel_groups: parallel_group = parallel_groups parallel_comm_group = comm_group assert len(parallel_group) > 0 assert parallel_comm_group is not None return parallel_group, parallel_comm_group def _get_p2p_next_rank(self): assert hasattr(self, 'next_rank'), "next_rank has not been inited" return self.next_rank def _get_p2p_prev_rank(self): assert hasattr(self, 'prev_rank'), "prev_rank has not been inited" return self.prev_rank def _set_p2p_group(self): comm_lists = self._topo.get_comm_list('pipe') self.send_next_group = None self.send_prev_group = None self.recv_next_group = None self.recv_prev_group = None for comm_ranks in comm_lists: assert len(comm_ranks) == self._pp_degree for idx, rank in enumerate(comm_ranks): curr_rank = rank next_rank = comm_ranks[(idx + 1) % self._pp_degree] prev_rank = comm_ranks[(idx - 1) % self._pp_degree] if self.global_rank == curr_rank: self.next_rank = next_rank self.prev_rank = prev_rank next_group = paddle.distributed.new_group( ranks=[curr_rank, next_rank] ) if self.global_rank == curr_rank: self.send_next_group = next_group elif self.global_rank == next_rank: self.recv_prev_group = next_group prev_group = paddle.distributed.new_group( ranks=[prev_rank, curr_rank] ) if self.global_rank == curr_rank: self.send_prev_group = prev_group elif self.global_rank == prev_rank: self.recv_next_group = prev_group assert self.send_next_group is not None assert self.send_prev_group is not None assert self.recv_next_group is not None assert self.recv_prev_group is not None def topology(self): return self._topo def get_global_rank(self): return self.global_rank # data parallel message: def _get_data_parallel_id(self): return self._topo.get_coord(self.global_rank).data def get_data_parallel_rank(self): return self._data_parallel_id def get_data_parallel_world_size(self): return self._dp_degree def get_data_parallel_group(self): return self._dp_comm_group def get_data_parallel_group_src_rank(self): return self._dp_comm_group.ranks[0] # model parallel message: def _get_model_parallel_id(self): return self._topo.get_coord(self.global_rank).model def get_model_parallel_rank(self): return self._model_parallel_id def get_model_parallel_world_size(self): return self._mp_degree def get_model_parallel_group(self): return self._mp_comm_group def get_model_parallel_group_src_rank(self): return self._mp_comm_group.ranks[0] # pipeline parallel message def _get_pipe_parallel_id(self): return self._topo.get_coord(self.global_rank).pipe def get_stage_id(self): return self.stage_id def get_pipe_parallel_world_size(self): return self._pp_degree def get_pipe_parallel_group(self): return self._pp_comm_group def get_p2p_groups(self): return ( self.send_next_group, self.send_prev_group, self.recv_next_group, self.recv_prev_group, ) # sharding parallel message: def _get_sharding_parallel_id(self): return self._topo.get_coord(self.global_rank).sharding def get_sharding_parallel_rank(self): return self._sharding_parallel_id def get_sharding_parallel_world_size(self): return self._sharding_degree def get_sharding_parallel_group(self): return self._sharding_comm_group def get_sharding_parallel_group_src_rank(self): # TODO should the src rank related to the shard rank for each parameter ? return self._sharding_comm_group.ranks[0] # check parallel group def get_check_parallel_group(self): return self._check_comm_group def get_rank_from_stage(self, stage_id, **kwargs): return self._topo.get_rank_from_stage( self.global_rank, pipe=stage_id, **kwargs ) class _CommunicateGroup: """tmp for static""" def __init__(self): global _HYBRID_PARALLEL_GROUP _HYBRID_PARALLEL_GROUP = self self.groups = {} def set_comm_group( self, group_name, group_rank, group_size, ring_id, group_ranks ): group = paddle.distributed.collective.Group( group_rank, ring_id, group_ranks ) self.groups[group_name] = group def get_group(self, group_name): assert group_name in self.groups return self.groups[group_name] def get_model_parallel_group(self): return self.get_group('model') def get_model_parallel_world_size(self): return self.get_group('model').nranks def get_model_parallel_rank(self): return self.get_group('model').rank