# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import paddle.fluid as fluid from simple_nets import init_data def case1_fill_grad_vars(): x = fluid.layers.data(name='image', shape=[784], dtype='float32') label = fluid.layers.data(name='label', shape=[1], dtype='int64') feature = fluid.layers.fc(input=x, size=20, act=None) part1, part2 = fluid.layers.split(feature, num_or_sections=[10, 10], dim=1) # Note that: part2 is not used. loss = fluid.layers.cross_entropy(input=part1, label=label) loss = fluid.layers.mean(loss) return loss def case2_prune_no_grad_branch(): x = fluid.layers.data(name='image', shape=[784], dtype='float32') label = fluid.layers.data(name='label', shape=[1], dtype='int64') feature = fluid.layers.fc(input=x, size=10, act=None) label = fluid.layers.cast(label, dtype="float32") label = fluid.layers.cast(label, dtype='int64') # Note that the label is not persistable in fluid.layers.cross_entropy. loss = fluid.layers.cross_entropy(input=feature, label=label) loss = fluid.layers.mean(loss) return loss def case3_prune_no_grad_branch2(): label = fluid.layers.data(name='label', shape=[1], dtype='int64') label = fluid.layers.cast(label, dtype="float32") label = fluid.layers.cast(label, dtype='int64') out = fluid.layers.one_hot(input=label, depth=100) loss = fluid.layers.mean(out) return loss def case4_with_no_grad_op_maker(): out = fluid.layers.gaussian_random(shape=[20, 30]) loss = fluid.layers.mean(out) return loss class TestBackward(unittest.TestCase): def check_backward(self, model, feed_dict): place = fluid.CPUPlace() exe = fluid.Executor(place) main = fluid.Program() startup = fluid.Program() with fluid.program_guard(main, startup): loss = model() optimizer = fluid.optimizer.SGD(learning_rate=0.1) optimizer.minimize(loss) exe.run(fluid.default_startup_program()) exe.run(feed=feed_dict) def test_backward(self): batch_size = 2 img, label = init_data(batch_size, img_shape=[784], label_range=9) feed_dict = {'image': img, 'label': label} self.check_backward(case1_fill_grad_vars, feed_dict) self.check_backward(case2_prune_no_grad_branch, feed_dict) self.check_backward(case3_prune_no_grad_branch2, {'label': label}) self.check_backward(case4_with_no_grad_op_maker, {}) if __name__ == '__main__': unittest.main()