// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/operators/top_k_function_cuda.h" #include "paddle/fluid/operators/top_k_v2_op.h" namespace paddle { namespace operators { using Tensor = framework::Tensor; #define FIXED_BLOCK_DIM_BASE(dim, ...) \ case (dim): { \ constexpr auto kBlockDim = (dim); \ __VA_ARGS__; \ } break #define FIXED_BLOCK_DIM(...) \ FIXED_BLOCK_DIM_BASE(256, ##__VA_ARGS__); \ FIXED_BLOCK_DIM_BASE(128, ##__VA_ARGS__); \ FIXED_BLOCK_DIM_BASE(64, ##__VA_ARGS__); \ FIXED_BLOCK_DIM_BASE(32, ##__VA_ARGS__) template class TopkV2OpCUDAKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { PADDLE_ENFORCE_EQ( platform::is_gpu_place(ctx.GetPlace()), true, platform::errors::InvalidArgument( "It must use CUDAPlace, you must check your device set.")); auto* input = ctx.Input("X"); auto* output = ctx.Output("Out"); auto* indices = ctx.Output("Indices"); // get the attributes int k = static_cast(ctx.Attr("k")); int axis = static_cast(ctx.Attr("axis")); const bool& sorted = static_cast(ctx.Attr("sorted")); const bool& largest = static_cast(ctx.Attr("largest")); // get the input dims const auto& in_dims = input->dims(); // calcluate the real axis if (axis < 0) axis += in_dims.size(); auto* k_t = ctx.Input("K"); if (k_t) { Tensor k_host; framework::TensorCopySync(*k_t, platform::CPUPlace(), &k_host); k = k_host.data()[0]; framework::DDim output_dims = output->dims(); output_dims[axis] = k; output->Resize(output_dims); indices->Resize(output_dims); } const auto& out_dims = output->dims(); const T* input_data = input->data(); T* output_data = output->mutable_data(ctx.GetPlace()); int64_t* indices_data = indices->mutable_data(ctx.GetPlace()); if (axis == in_dims.size() - 1) { // if get the topK from the last axis const int64_t& input_height = framework::product( framework::slice_ddim(in_dims, 0, in_dims.size() - 1)); const int64_t& input_width = in_dims[in_dims.size() - 1]; const auto& dev_ctx = ctx.cuda_device_context(); if (k > input_width) k = input_width; // The conclusion is drawn from the data through multiple sets of // statistics if (input_width >= 128 && k >= input_width * 0.75) { if (SortTopk(dev_ctx, input, input_width, input_height, k, output, indices, largest)) { // Successed, return. return; } else { LOG(INFO) << "TopKOP: Some errors happened when use cub sorting, use " "default topk kernel."; } } // NOTE: pass lds and dim same to input width. // NOTE: old matrix implementation of stride is different to eigen. const int kMaxHeight = 2048; int gridx = input_height < kMaxHeight ? input_height : kMaxHeight; switch (GetDesiredBlockDim(input_width)) { #ifdef PADDLE_WITH_HIP FIXED_BLOCK_DIM( KeMatrixTopK<<>>( output_data, k, indices_data, input_data, input_width, input_width, static_cast(k), gridx, input_height, largest)); #else FIXED_BLOCK_DIM( KeMatrixTopK<<>>( output_data, k, indices_data, input_data, input_width, input_width, static_cast(k), gridx, input_height, largest)); #endif default: PADDLE_THROW(platform::errors::Fatal( "the input data shape has error in the topk cuda kernel.")); } } else { // if get topK not from the last axis, will tranpose the tensor and get // TopK // first step, prepare the trans args for the tranpose std::vector trans; for (int i = 0; i < axis; i++) { trans.emplace_back(i); } trans.emplace_back(in_dims.size() - 1); for (int i = axis + 1; i < in_dims.size() - 1; i++) { trans.emplace_back(i); } trans.emplace_back(axis); framework::DDim trans_dims(in_dims); framework::DDim trans_out_dims(output->dims()); for (int i = 0; i < trans.size(); i++) { trans_dims[i] = in_dims[trans[i]]; trans_out_dims[i] = out_dims[trans[i]]; } // second step, tranpose the input Tensor trans_input; trans_input.mutable_data(trans_dims, ctx.GetPlace()); int ndims = trans.size(); const auto& dev_ctx = ctx.cuda_device_context(); TransCompute(ndims, dev_ctx, *input, &trans_input, trans); // third step, calcluate the topk // allocate the tmp cuda memory for the tmp result Tensor trans_ind; trans_ind.mutable_data(trans_out_dims, ctx.GetPlace()); Tensor trans_out; trans_out.mutable_data(trans_out_dims, ctx.GetPlace()); const int64_t input_height = framework::product( framework::slice_ddim(trans_dims, 0, trans_dims.size() - 1)); const int64_t input_width = trans_dims[trans_dims.size() - 1]; if (k > input_width) k = input_width; // The conclusion is drawn from the data through multiple sets of // statistics if (input_width >= 128 && k >= input_width * 0.75) { if (SortTopk(dev_ctx, &trans_input, input_width, input_height, k, &trans_out, &trans_ind, largest)) { // last step, tranpose back the indices and output TransCompute( ndims, dev_ctx, trans_ind, indices, trans); TransCompute( ndims, dev_ctx, trans_out, output, trans); return; } else { LOG(INFO) << "TopKOP: Some errors happened when use cub sorting, use " "default topk kernel."; } } const int kMaxHeight = 2048; int gridx = input_height < kMaxHeight ? input_height : kMaxHeight; switch (GetDesiredBlockDim(input_width)) { #ifdef PADDLE_WITH_HIP FIXED_BLOCK_DIM( KeMatrixTopK<<>>( trans_out.data(), k, trans_ind.data(), trans_input.data(), input_width, input_width, static_cast(k), gridx, input_height, largest)); #else FIXED_BLOCK_DIM( KeMatrixTopK<<>>( trans_out.data(), k, trans_ind.data(), trans_input.data(), input_width, input_width, static_cast(k), gridx, input_height, largest)); #endif default: PADDLE_THROW(platform::errors::Fatal( "the input data shape has error in the topk cuda kernel.")); } // last step, tranpose back the indices and output TransCompute( ndims, dev_ctx, trans_ind, indices, trans); TransCompute(ndims, dev_ctx, trans_out, output, trans); } } }; #undef FIXED_BLOCK_DIM_BASE #undef FIXED_BLOCK_DIM template class TopkV2OpGradCUDAKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { PADDLE_ENFORCE_EQ( platform::is_gpu_place(context.GetPlace()), true, platform::errors::InvalidArgument( "It must use CUDAPlace, you must check your device set.")); auto* x = context.Input("X"); auto* out_grad = context.Input(framework::GradVarName("Out")); auto* indices = context.Input("Indices"); auto* x_grad = context.Output(framework::GradVarName("X")); int axis = context.Attr("axis"); const auto& in_dims = x->dims(); const auto& out_dims = indices->dims(); // get the real the axis and the k if (axis < 0) axis += in_dims.size(); const int& k = out_dims[axis]; const int& raw_height = in_dims[axis]; // allocate the cuda memory for the x_grad T* x_grad_data = x_grad->mutable_data(context.GetPlace()); const T* out_grad_data = out_grad->data(); const int64_t* indices_data = indices->data(); int pre, n, post; GetDims(in_dims, axis, &pre, &n, &post); // calcluate the block and grid num auto& dev_ctx = context.cuda_device_context(); auto ComputeBlockSize = [](int col) { if (col > 512) return 1024; else if (col > 256 && col <= 512) return 512; else if (col > 128 && col <= 256) return 256; else if (col > 64 && col <= 128) return 128; else return 64; }; int block_size = ComputeBlockSize(post * k); int max_threads = dev_ctx.GetMaxPhysicalThreadCount(); const int max_blocks = std::max(((max_threads - 1) / block_size + 1), 1); int grid_size = std::min(max_blocks, pre); // lanuch the cuda kernel to assign the grad AssignGradWithAxis<<>>( out_grad_data, indices_data, x_grad_data, pre, post, n, k); } }; } // namespace operators } // namespace paddle REGISTER_OP_CUDA_KERNEL( top_k_v2, paddle::operators::TopkV2OpCUDAKernel, paddle::operators::TopkV2OpCUDAKernel, paddle::operators::TopkV2OpCUDAKernel, paddle::operators::TopkV2OpCUDAKernel, paddle::operators::TopkV2OpCUDAKernel); REGISTER_OP_CUDA_KERNEL( top_k_v2_grad, paddle::operators::TopkV2OpGradCUDAKernel< paddle::platform::CUDADeviceContext, float>, paddle::operators::TopkV2OpGradCUDAKernel< paddle::platform::CUDADeviceContext, double>, paddle::operators::TopkV2OpGradCUDAKernel< paddle::platform::CUDADeviceContext, int>, paddle::operators::TopkV2OpGradCUDAKernel< paddle::platform::CUDADeviceContext, int64_t>, paddle::operators::TopkV2OpGradCUDAKernel< paddle::platform::CUDADeviceContext, paddle::platform::float16>);