// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/tensor_unfold_grad_kernel.h" #include "paddle/phi/backends/all_context.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/kernels/fill_kernel.h" #include "paddle/phi/kernels/strided_copy_kernel.h" #include "paddle/phi/kernels/tensor_unfold_kernel.h" namespace phi { template void TensorUnfoldGradKernel(const Context& dev_ctx, const DenseTensor& input, const DenseTensor& out_grad, int64_t axis, int64_t size, int64_t step, DenseTensor* input_grad) { if (axis < 0) { axis += input.dims().size(); } dev_ctx.Alloc(input_grad, input_grad->dtype()); input_grad->set_strides(DenseTensorMeta::calc_strides(input_grad->dims())); if (out_grad.numel() < input.numel()) { PD_VISIT_ALL_TYPES(input_grad->dtype(), "TensorUnfoldGradKernel", ([&] { phi::FillKernel( dev_ctx, *input_grad, 0, input_grad); })); } DenseTensor tmp; tmp.set_layout(out_grad.layout()); tmp.set_lod(out_grad.lod()); tmp.set_type(out_grad.dtype()); tmp.Resize(out_grad.dims()); TensorUnfoldKernel(dev_ctx, *input_grad, axis, size, step, &tmp); PD_VISIT_ALL_TYPES(out_grad.dtype(), "TensorUnfoldGradKernel", ([&] { phi::StridedCopyKernel( dev_ctx, out_grad, phi::vectorize(tmp.dims()), phi::vectorize(tmp.strides()), tmp.offset(), &tmp); })); } } // namespace phi PD_REGISTER_KERNEL_FOR_ALL_BACKEND_DTYPE_EXCEPT_CUSTOM( tensor_unfold_grad, STRIDED, phi::TensorUnfoldGradKernel) {}