// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/eager/grad_node_info.h" #include "paddle/fluid/eager/accumulation/accumulation_node.h" #include "paddle/fluid/eager/autograd_meta.h" #include "paddle/fluid/eager/utils.h" #include "paddle/phi/common/data_type.h" #include "paddle/phi/core/dense_tensor.h" #include "paddle/phi/core/sparse_coo_tensor.h" #include "paddle/fluid/framework/convert_utils.h" #include "paddle/fluid/framework/data_type.h" #include "paddle/fluid/framework/data_type_transform.h" #include "paddle/fluid/framework/var_type.h" #include "paddle/fluid/platform/enforce.h" #include "paddle/fluid/platform/errors.h" #include "glog/logging.h" /** * Implementation of GradNodeBase, Edge and GradTensorHolder. **/ namespace egr { GradNodeBase::GradNodeBase(size_t bwd_in_slot_num, size_t bwd_out_slot_num) { VLOG(6) << "Construct GradNodeBase"; bwd_in_meta_.resize(bwd_in_slot_num); bwd_out_meta_.resize(bwd_out_slot_num); adj_edges_.resize(bwd_out_slot_num); } void GradNodeBase::AddEdges(std::vector* metas, size_t slot_id) { PADDLE_ENFORCE_LT( slot_id, adj_edges_.size(), paddle::platform::errors::InvalidArgument( "Given slot id is out of range of adj_edges outter size, " "adj_edges is designed to has the same size of grad " "inputs's slot num.")); for (size_t i = 0; i < metas->size(); i++) { const auto& meta = (*metas)[i]; // adj_edges has as same rank as fwd inputs, and record it's output rank // from // its pre-ops if (meta && !meta->StopGradient()) { auto node = meta->GetMutableGradNode(); if (!node || !node.get()) { meta->SetGradNode(std::make_shared(meta)); } adj_edges_[slot_id].emplace_back(meta->GetMutableGradNode(), meta->OutRankInfo()); } else { adj_edges_[slot_id].emplace_back(); } } } void GradNodeBase::AddEdges(AutogradMeta* meta, size_t slot_id) { PADDLE_ENFORCE_LT( slot_id, adj_edges_.size(), paddle::platform::errors::InvalidArgument( "Given slot id is out of range of adj_edges outter size, " "adj_edges is designed to has the same size of grad " "inputs's slot num.")); if (meta && !meta->StopGradient()) { auto node = meta->GetMutableGradNode(); if (!node || !node.get()) { meta->SetGradNode(std::make_shared(meta)); } VLOG(6) << "Add Edges for slot: " << slot_id << ", the Edge is from " << this->name() << " to " << meta->GetMutableGradNode()->name(); adj_edges_[slot_id].emplace_back(meta->GetMutableGradNode(), meta->OutRankInfo()); } else { adj_edges_[slot_id].emplace_back(); } } const std::vector>& GradNodeBase::InputMeta() const { return bwd_in_meta_; } const std::vector>& GradNodeBase::OutputMeta() const { return bwd_out_meta_; } void GradNodeBase::SetGradInMeta(const paddle::experimental::Tensor& fwd_out, size_t slot_rank) { VLOG(6) << "Set GradSlotMeta for Grad Inputs"; auto* fwd_out_meta = egr::EagerUtils::nullable_autograd_meta(fwd_out); PADDLE_ENFORCE_LE( slot_rank, (bwd_in_meta_.size() - 1), paddle::platform::errors::InvalidArgument( "Slot Rank should less equal than bwd_in_meta_ size, since " "bwd_in_meta_ is designed to hold as same num as backward " "inputs.")); auto& metas = bwd_in_meta_.at(slot_rank); if (metas.size() == 0) { metas.resize(1); } auto& meta = metas[0]; meta.SetStopGradient(fwd_out_meta->StopGradient()); if (!fwd_out.initialized()) { VLOG(6) << "Skip Configuring GradSlotMeta for uninitialized GradInput Tensor"; return; } phi::DenseTensor* dense_tensor = nullptr; // Record TensorMeta if (phi::DenseTensor::classof(fwd_out.impl().get())) { // Only Copy Meta dense_tensor = static_cast(fwd_out.impl().get()); } else if (phi::SparseCooTensor::classof(fwd_out.impl().get())) { phi::SparseCooTensor* coo_tensor = static_cast(fwd_out.impl().get()); dense_tensor = coo_tensor->mutable_non_zero_elements(); } else { VLOG(6) << "Unable to initialize the DenseTensorMeta of GradSlotMeta with " "non-DenseTensor argument."; } PADDLE_ENFORCE_NE( dense_tensor->meta().dtype, phi::DataType::UNDEFINED, paddle::platform::errors::Fatal( "Attempting to copy DenseTensorMeta with phi::DataType::UNDEFINED," "which is illegal.")); meta.SetTensorMeta(dense_tensor->meta()); meta.SetPlace(fwd_out.place()); if (paddle::framework::IsComplexType( paddle::framework::TransToProtoVarType(dense_tensor->type()))) { need_complex_to_real_ = true; } } void GradNodeBase::SetGradInMeta( const std::vector& fwd_out, size_t slot_rank) { VLOG(6) << "Set GradSlotMeta for Grad Inputs"; size_t slot_size = fwd_out.size(); PADDLE_ENFORCE_LE( slot_rank, (bwd_in_meta_.size() - 1), paddle::platform::errors::InvalidArgument( "Slot Rank should less equal than bwd_in_meta_ size, since " "bwd_in_meta_ is designed to hold as same num as backward " "inputs.")); auto& metas = bwd_in_meta_.at(slot_rank); // Init stop gradient vector before use to avoid push back if (metas.size() < slot_size) { VLOG(7) << "Init bwd_in_meta_ with slot rank: " << slot_rank; metas.resize(slot_size); } for (size_t i = 0; i < slot_size; i++) { auto& meta = metas[i]; const auto& fwd_out_tensor = fwd_out[i]; auto* fwd_out_meta = egr::EagerUtils::nullable_autograd_meta(fwd_out_tensor); PADDLE_ENFORCE_NOT_NULL(fwd_out_meta, paddle::platform::errors::PreconditionNotMet( "Bwd_in_meta should only be called while " "autograd_meta is not null. If you got this " "error, it indicates bugs in framework.")); if (fwd_out_meta->StopGradient()) { // Set Stop Gradient only when its true or non-initialized autograd_meta, // since all default value is false. meta.SetStopGradient(fwd_out_meta->StopGradient()); } if (!fwd_out_tensor.initialized()) { VLOG(6) << "Skip Configuring GradSlotMeta for uninitialized GradInput Tensor"; return; } // Record TensorMeta if (phi::DenseTensor::classof(fwd_out_tensor.impl().get())) { // Only Copy Meta phi::DenseTensor* dense_tensor = static_cast(fwd_out_tensor.impl().get()); PADDLE_ENFORCE_NE( dense_tensor->meta().dtype, phi::DataType::UNDEFINED, paddle::platform::errors::Fatal("Attempting to copy DenseTensorMeta " "with phi::DataType::UNDEFINED," "which is illegal.")); meta.SetTensorMeta(dense_tensor->meta()); meta.SetPlace(fwd_out_tensor.place()); if (paddle::framework::IsComplexType( paddle::framework::TransToProtoVarType(dense_tensor->type()))) { need_complex_to_real_ = true; } } else { VLOG(6) << "Unable to initialize the DenseTensorMeta of GradSlotMeta " "with non-DenseTensor argument."; } } } void GradNodeBase::SetGradOutMeta(const paddle::experimental::Tensor& fwd_in, size_t slot_rank) { auto* fwd_in_meta = egr::EagerUtils::nullable_autograd_meta(fwd_in); PADDLE_ENFORCE_LE( (slot_rank + 1), bwd_out_meta_.size(), paddle::platform::errors::InvalidArgument( "Slot Rank should less equal than bwd_out_meta_ size, " "since bwd_out_meta_ is designed to hold as same num as " "backward outputs.")); auto& metas = bwd_out_meta_.at(slot_rank); // Init stop gradient vector before use to avoid push back if (metas.size() == 0) { metas.resize(1); } auto& meta = metas[0]; if (fwd_in_meta) { meta.SetStopGradient(fwd_in_meta->StopGradient()); } else { meta.SetStopGradient(true); } // Record TensorMeta if (fwd_in.impl() && fwd_in.impl().get()) { if (phi::DenseTensor::classof(fwd_in.impl().get())) { // Only Copy Meta phi::DenseTensor* dense_tensor = static_cast(fwd_in.impl().get()); PADDLE_ENFORCE_NE( dense_tensor->meta().dtype, phi::DataType::UNDEFINED, paddle::platform::errors::Fatal("Attempting to copy DenseTensorMeta " "with phi::DataType::UNDEFINED," "which is illegal.")); meta.SetTensorMeta(dense_tensor->meta()); meta.SetPlace(fwd_in.place()); } } else { VLOG(6) << "Unable to initialize the DenseTensorMeta of GradSlotMeta with " "non-DenseTensor argument."; } } void GradNodeBase::SetGradOutMeta( const std::vector& fwd_in, size_t slot_rank) { size_t slot_size = fwd_in.size(); PADDLE_ENFORCE_LE( slot_rank, (bwd_out_meta_.size() - 1), paddle::platform::errors::InvalidArgument( "Slot Rank should less equal than bwd_out_meta_ size, " "since bwd_out_meta_ is designed to hold as same num as " "backward outputs.")); auto& metas = bwd_out_meta_.at(slot_rank); // Init stop gradient vector before use to avoid push back if (metas.size() < slot_size) { metas.resize(slot_size); } for (size_t i = 0; i < slot_size; i++) { const auto& fwd_in_tensor = fwd_in[i]; auto& meta = metas[i]; auto* fwd_in_meta = egr::EagerUtils::nullable_autograd_meta(fwd_in_tensor); if (fwd_in_meta) { // Set Stop Gradient only when its true or non-initialized autograd_meta, // since all default value is false. meta.SetStopGradient(fwd_in_meta->StopGradient()); } // Record TensorMeta if (fwd_in_tensor.impl() && fwd_in_tensor.impl().get()) { if (phi::DenseTensor::classof(fwd_in_tensor.impl().get())) { // Only Copy Meta phi::DenseTensor* dense_tensor = static_cast(fwd_in_tensor.impl().get()); PADDLE_ENFORCE_NE(dense_tensor->meta().dtype, phi::DataType::UNDEFINED, paddle::platform::errors::Fatal( "Attempting to copy DenseTensorMeta with " "phi::DataType::UNDEFINED," "which is illegal.")); meta.SetTensorMeta(dense_tensor->meta()); meta.SetPlace(fwd_in_tensor.place()); } } else { VLOG(6) << "Unable to initialize the DenseTensorMeta of GradSlotMeta " "with non-DenseTensor argument."; } } } void GradNodeBase::SetDefaultGradInOutMeta() { PADDLE_ENFORCE((bwd_out_meta_.size() == 1) && (bwd_in_meta_.size() == 1), paddle::platform::errors::PreconditionNotMet( "We can only support 1 input and 1 output in default grad " "meta setter, other size of inputs and outputs should " "create with Setter and Getters")); // Default stop_gradient is false and slot id is 0, slot size is 1; bwd_out_meta_[0].resize(1); bwd_in_meta_[0].resize(1); } int64_t GradNodeBase::RegisterGradientHook( size_t slot_id, size_t rank, std::shared_ptr&& hook) { gradient_hooks_.emplace(next_hook_id_, std::make_tuple(slot_id, rank, std::move(hook))); return next_hook_id_++; } const std::vector>& GradNodeBase::GetEdges() const { return adj_edges_; } std::vector>& GradNodeBase::GetMutableEdges() { return adj_edges_; } std::vector> GradNodeBase::ApplyGradientHooks( const std::vector>& tensors) { std::vector> outs(tensors.size()); for (auto& hook_pair : gradient_hooks_) { size_t slot_id = std::get<0>(hook_pair.second); size_t rank = std::get<1>(hook_pair.second); auto hook = std::get<2>(hook_pair.second); PADDLE_ENFORCE(slot_id < tensors.size(), paddle::platform::errors::Fatal( "Slot_id from registered hook should be smaller than " "slot size of grad_tensors")); PADDLE_ENFORCE(rank < tensors[slot_id].size(), paddle::platform::errors::Fatal( "rank of slot %d from registered hook should be smaller " "than rank size of grad_tensors", slot_id)); std::vector& slot_out = outs[slot_id]; slot_out.resize(tensors[slot_id].size()); paddle::experimental::Tensor& out = slot_out[rank]; if (!out.defined() || !out.initialized()) { out = (*hook)(tensors[slot_id][rank]); } else { // If more than one hook is registered, the input to the next hook func // should be the output of the previous hook out = (*hook)(out); } } for (size_t i = 0; i < outs.size(); i++) { if (outs[i].empty() && (!tensors[i].empty())) { outs[i].resize(tensors[i].size()); } // TODO(Jiabin): Optimize this if we only add hook slot by slot for (size_t j = 0; j < outs[i].size(); j++) { if (!outs[i][j].defined() || !outs[i][j].initialized()) { outs[i][j] = tensors[i][j]; } CheckTensor(tensors[i][j], outs[i][j]); } } return outs; } void GradNodeBase::HandleComplexGradToRealGrad( std::vector>* out_grads) { for (size_t slot_id = 0; slot_id < out_grads->size(); slot_id++) { const std::vector& slot_out_grads = (*out_grads)[slot_id]; for (size_t rank_id = 0; rank_id < slot_out_grads.size(); rank_id++) { const GradSlotMeta& slot_meta = bwd_out_meta_[slot_id][rank_id]; PADDLE_ENFORCE( slot_meta.HasTensorMeta() > 0, paddle::platform::errors::Fatal( "We require TensorMeta in GradInputMeta() to obtain forward data " "types." "However, no TensorMeta is detected in bwd_out_meta_.")); auto fwd_data_type = paddle::framework::TransToProtoVarType( slot_meta.GetTensorMeta().dtype); const paddle::experimental::Tensor& grad = slot_out_grads[rank_id]; if (paddle::framework::IsComplexType(fwd_data_type)) continue; // Only Handle Complex To Real for DenseTensor for now if (phi::DenseTensor::classof(grad.impl().get())) { phi::DenseTensor* grad_dense_tensor = static_cast(grad.impl().get()); auto curr_data_type = paddle::framework::TransToProtoVarType(grad_dense_tensor->type()); if (!paddle::framework::IsComplexType(curr_data_type)) continue; // Convert Complex GradOut to Real auto out = std::make_shared(); paddle::framework::TransComplexToReal(fwd_data_type, curr_data_type, *grad_dense_tensor, out.get()); (*out_grads)[slot_id][rank_id].set_impl(out); } } } } } // namespace egr