#!/usr/bin/env python3 # Copyright (c) 2021 CINN Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import time import unittest import numpy as np from cinn.common import * from cinn.framework import * from cinn.frontend import * from paddle import fluid enable_gpu = sys.argv.pop() model_dir = sys.argv.pop() print("enable_gpu is : ", enable_gpu) print("model_dir is : ", model_dir) class TestLoadFaceDetModel(unittest.TestCase): def setUp(self): if enable_gpu == "ON": self.target = DefaultNVGPUTarget() else: self.target = DefaultHostTarget() self.model_dir = model_dir self.x_shape = [1, 3, 240, 320] self.target_tensor = 'save_infer_model/scale_0.tmp_1' self.input_tensor = 'x0' def get_paddle_inference_result(self, model_dir, data): config = fluid.core.AnalysisConfig( model_dir + '/__model__', model_dir + '/params' ) config.disable_gpu() config.switch_ir_optim(False) self.paddle_predictor = fluid.core.create_paddle_predictor(config) data = fluid.core.PaddleTensor(data) results = self.paddle_predictor.run([data]) get_tensor = self.paddle_predictor.get_output_tensor( self.target_tensor ).copy_to_cpu() return get_tensor def apply_test(self): start = time.time() x_data = np.random.random(self.x_shape).astype("float32") self.executor = Interpreter([self.input_tensor], [self.x_shape]) print("self.mode_dir is:", self.model_dir) # True means load combined model self.executor.load_paddle_model( self.model_dir, self.target, True, "facedet" ) end1 = time.time() print("load_paddle_model time is: %.3f sec" % (end1 - start)) a_t = self.executor.get_tensor(self.input_tensor) a_t.from_numpy(x_data, self.target) out = self.executor.get_tensor(self.target_tensor) out.from_numpy(np.zeros(out.shape(), dtype='float32'), self.target) for i in range(10): self.executor.run() repeat = 10 end4 = time.perf_counter() for i in range(repeat): self.executor.run() end5 = time.perf_counter() print( "Repeat %d times, average Executor.run() time is: %.3f ms" % (repeat, (end5 - end4) * 1000 / repeat) ) a_t.from_numpy(x_data, self.target) out.from_numpy(np.zeros(out.shape(), dtype='float32'), self.target) self.executor.run() out = out.numpy(self.target) target_result = self.get_paddle_inference_result(self.model_dir, x_data) print("result in test_model: \n") out = out.reshape(-1) target_result = target_result.reshape(-1) for i in range(0, min(out.shape[0], 200)): if np.abs(out[i] - target_result[i]) > 1e-3: print( "Error! ", i, "-th data has diff with target data:\n", out[i], " vs: ", target_result[i], ". Diff is: ", out[i] - target_result[i], ) np.testing.assert_allclose(out, target_result, atol=1e-3) def test_model(self): self.apply_test() if __name__ == "__main__": unittest.main()