# Copyright (c) 2023 CINN Authors. All Rights Reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from cinn.common import * from cinn.frontend import * from op_test import OpTest, OpTestTool from op_test_helper import TestCaseHelper import paddle @OpTestTool.skip_if( not is_compiled_with_cuda(), "x86 test will be skipped due to timeout." ) class TestLogicalOrOp(OpTest): def setUp(self): print(f"\nRunning {self.__class__.__name__}: {self.case}") self.prepare_inputs() def prepare_inputs(self): self.x_np = self.random( shape=self.case["x_shape"], dtype=self.case["x_dtype"], low=-10, high=100, ) self.y_np = self.random( shape=self.case["y_shape"], dtype=self.case["y_dtype"], low=-10, high=100, ) def build_paddle_program(self, target): x = paddle.to_tensor(self.x_np, stop_gradient=False) y = paddle.to_tensor(self.y_np, stop_gradient=False) def get_unsqueeze_axis(x_rank, y_rank, axis): self.assertTrue( x_rank >= y_rank, "The rank of x should be greater or equal to that of y.", ) axis = axis if axis >= 0 else x_rank - y_rank unsqueeze_axis = ( np.arange(0, axis).tolist() + np.arange(axis + y_rank, x_rank).tolist() ) return unsqueeze_axis unsqueeze_axis = get_unsqueeze_axis( len(x.shape), len(y.shape), self.case["axis"] ) y_t = ( paddle.unsqueeze(y, axis=unsqueeze_axis) if len(unsqueeze_axis) > 0 else y ) out = paddle.logical_or(x, y_t) self.paddle_outputs = [out] def build_cinn_program(self, target): builder = NetBuilder("logical_and") x = builder.create_input( self.nptype2cinntype(self.case["x_dtype"]), self.case["x_shape"], "x", ) y = builder.create_input( self.nptype2cinntype(self.case["y_dtype"]), self.case["y_shape"], "y", ) out = builder.logical_or(x, y, axis=self.case["axis"]) prog = builder.build() res = self.get_cinn_output( prog, target, [x, y], [self.x_np, self.y_np], [out] ) self.cinn_outputs = res def test_check_results(self): max_relative_error = ( self.case["max_relative_error"] if "max_relative_error" in self.case else 1e-5 ) self.check_outputs_and_grads(max_relative_error=max_relative_error) class TestLogicalOrCase(TestCaseHelper): def init_attrs(self): self.class_name = "TestLogicalOrCase" self.cls = TestLogicalOrOp self.inputs = [ {"x_shape": [1], "y_shape": [1]}, {"x_shape": [1024], "y_shape": [1024]}, {"x_shape": [512, 256], "y_shape": [512, 256]}, {"x_shape": [128, 64, 32], "y_shape": [128, 64, 32]}, {"x_shape": [128, 2048, 32], "y_shape": [128, 2048, 32]}, {"x_shape": [16, 8, 4, 2], "y_shape": [16, 8, 4, 2]}, {"x_shape": [1, 1, 1, 1], "y_shape": [1, 1, 1, 1]}, {"x_shape": [16, 8, 4, 2, 1], "y_shape": [16, 8, 4, 2, 1]}, ] self.dtypes = [ {"x_dtype": "bool", "y_dtype": "bool"}, {"x_dtype": "int8", "y_dtype": "int8"}, {"x_dtype": "int16", "y_dtype": "int16"}, {"x_dtype": "int32", "y_dtype": "int32"}, {"x_dtype": "int64", "y_dtype": "int64"}, {"x_dtype": "float32", "y_dtype": "float32"}, {"x_dtype": "float64", "y_dtype": "float64"}, ] self.attrs = [{"axis": -1}] class TestLogicalOrCaseWithBroadcast(TestCaseHelper): def init_attrs(self): self.class_name = "TestLogicalOrCaseWithBroadcast" self.cls = TestLogicalOrOp self.inputs = [ {"x_shape": [1], "y_shape": [1]}, {"x_shape": [1024], "y_shape": [1]}, {"x_shape": [512, 256], "y_shape": [512, 1]}, {"x_shape": [128, 64, 32], "y_shape": [128, 64, 1]}, {"x_shape": [16, 1, 1, 2], "y_shape": [16, 8, 4, 2]}, {"x_shape": [16, 1, 1, 2, 1], "y_shape": [16, 8, 4, 2, 1]}, ] self.dtypes = [ {"x_dtype": "bool", "y_dtype": "bool"}, {"x_dtype": "int8", "y_dtype": "int8"}, {"x_dtype": "int16", "y_dtype": "int16"}, {"x_dtype": "int32", "y_dtype": "int32"}, {"x_dtype": "int64", "y_dtype": "int64"}, {"x_dtype": "float32", "y_dtype": "float32"}, {"x_dtype": "float64", "y_dtype": "float64"}, ] self.attrs = [{"axis": -1}] if __name__ == "__main__": TestLogicalOrCase().run() TestLogicalOrCaseWithBroadcast().run()