#!/usr/bin/env python3 # Copyright (c) 2021 CINN Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from cinn.common import * from cinn.frontend import * from op_test import OpTest, OpTestTool from op_test_helper import TestCaseHelper import paddle @OpTestTool.skip_if( not is_compiled_with_cuda(), "x86 test will be skipped due to timeout." ) class TestGaussianRandomOp(OpTest): def setUp(self): # print(f"\n{self.__class__.__name__}: {self.case}") pass def build_paddle_program(self, target): out = paddle.tensor.random.gaussian( shape=self.case["shape"], mean=self.case["mean"], std=self.case["std"], dtype=self.case["dtype"], ) self.paddle_outputs = [out] def build_cinn_program(self, target): builder = NetBuilder("gaussian_random") out = builder.gaussian_random( self.case["shape"], self.case["mean"], self.case["std"], self.case["seed"], self.case["dtype"], ) prog = builder.build() res = self.get_cinn_output(prog, target, [], [], [out], passes=[]) self.cinn_outputs = res def test_check_results(self): # Due to the different random number generation numbers implemented # in the specific implementation, the random number results generated # by CINN and Paddle are not the same, but they all conform to the # Uniform distribution. self.check_outputs_and_grads( max_relative_error=10000, max_absolute_error=10000 ) class TestGaussianRandomOpShape(TestCaseHelper): def init_attrs(self): self.class_name = "TestGaussianRandomOpCase" self.cls = TestGaussianRandomOp self.inputs = [ { "shape": [1], }, { "shape": [1024], }, { "shape": [512, 256], }, { "shape": [128, 64, 32], }, { "shape": [16, 8, 4, 2], }, { "shape": [16, 8, 4, 2, 1], }, ] self.dtypes = [ { "dtype": "float32", }, ] self.attrs = [ { "mean": 0.0, "std": 0.0, "seed": 1234, }, ] class TestGaussianRandomOpDtype(TestCaseHelper): def init_attrs(self): self.class_name = "TestGaussianRandomOpCase" self.cls = TestGaussianRandomOp self.inputs = [ { "shape": [1024], }, ] self.dtypes = [ { "dtype": "float32", }, { "dtype": "float64", }, ] self.attrs = [ { "mean": 0.0, "std": 0.0, "seed": 1234, }, ] class TestGaussianRandomOpAttr(TestCaseHelper): def init_attrs(self): self.class_name = "TestGaussianRandomOpCase" self.cls = TestGaussianRandomOp self.inputs = [ { "shape": [1024], }, ] self.dtypes = [ { "dtype": "float32", }, ] self.attrs = [ { "mean": 1.0, "std": 0.0, "seed": 1, }, { "mean": 0.0, "std": 1.0, "seed": 2, }, { "mean": 1.0, "std": 1.0, "seed": 3, }, ] if __name__ == "__main__": TestGaussianRandomOpShape().run() TestGaussianRandomOpDtype().run() TestGaussianRandomOpAttr().run()