#!/usr/bin/env python3 # Copyright (c) 2022 CINN Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from cinn.common import * from cinn.frontend import * from op_test import OpTest, OpTestTool from op_test_helper import TestCaseHelper import paddle @OpTestTool.skip_if( not is_compiled_with_cuda(), "x86 test will be skipped due to timeout." ) class TestFloorDivideOp(OpTest): def setUp(self): print(f"\nRunning {self.__class__.__name__}: {self.case}") self.init_case() def init_case(self): self.x_np = self.random( shape=self.case["x_shape"], dtype=self.case["x_dtype"], low=self.case["x_low"], high=self.case["x_high"], ) self.y_np = self.random( shape=self.case["y_shape"], dtype=self.case["y_dtype"], low=self.case["y_low"], high=self.case["y_high"], ) def build_paddle_program(self, target): x = paddle.to_tensor(self.x_np, stop_gradient=True) y = paddle.to_tensor(self.y_np, stop_gradient=True) out = paddle.floor_divide(x, y) self.paddle_outputs = [out] def build_cinn_program(self, target): builder = NetBuilder("pow") x = builder.create_input( self.nptype2cinntype(self.case["x_dtype"]), self.case["x_shape"], "x", ) y = builder.create_input( self.nptype2cinntype(self.case["y_dtype"]), self.case["y_shape"], "y", ) out = builder.floor_divide(x, y) prog = builder.build() res = self.get_cinn_output( prog, target, [x, y], [self.x_np, self.y_np], [out] ) self.cinn_outputs = res def test_check_results(self): max_relative_error = ( self.case["max_relative_error"] if "max_relative_error" in self.case else 1e-5 ) self.check_outputs_and_grads(max_relative_error=max_relative_error) class TestFloorDivideShape(TestCaseHelper): def init_attrs(self): self.class_name = "TestFloorDivideOpCase" self.cls = TestFloorDivideOp self.inputs = [ { "x_shape": [1], "y_shape": [1], }, { "x_shape": [1024], "y_shape": [1024], }, { "x_shape": [512, 256], "y_shape": [512, 256], }, { "x_shape": [128, 64, 32], "y_shape": [128, 64, 32], }, { "x_shape": [16, 8, 4, 2], "y_shape": [16, 8, 4, 2], }, { "x_shape": [16, 8, 4, 2, 1], "y_shape": [16, 8, 4, 2, 1], }, ] self.dtypes = [ { "x_dtype": "int32", "y_dtype": "int32", }, ] self.attrs = [ { "x_low": -10, "x_high": 10, "y_low": -10, "y_high": -1, }, { "x_low": -10, "x_high": 10, "y_low": 1, "y_high": 10, }, ] class TestFloorDivideBroadcast(TestFloorDivideShape): def init_attrs(self): super().init_attrs() self.inputs = [ { "x_shape": [1], "y_shape": [1], }, { "x_shape": [1024], "y_shape": [1], }, { "x_shape": [512, 256], "y_shape": [1, 1], }, { "x_shape": [128, 64, 32], "y_shape": [1, 1, 1], }, { "x_shape": [16, 8, 4, 2], "y_shape": [1, 1, 1, 1], }, { "x_shape": [16, 8, 4, 2, 1], "y_shape": [1, 1, 1, 1, 1], }, ] class TestFloorDivideDtype(TestFloorDivideShape): def init_attrs(self): super().init_attrs() self.inputs = [ { "x_shape": [1024], "y_shape": [1024], }, ] self.dtypes = [ { "x_dtype": "int8", "y_dtype": "int8", }, { "x_dtype": "int16", "y_dtype": "int16", }, { "x_dtype": "int32", "y_dtype": "int32", }, { "x_dtype": "int64", "y_dtype": "int64", }, { "x_dtype": "float16", "y_dtype": "float16", "max_relative_error": 1, }, { "x_dtype": "float32", "y_dtype": "float32", }, { "x_dtype": "float64", "y_dtype": "float64", }, ] class TestFloorDivideUINT(TestCaseHelper): def init_attrs(self): self.class_name = "TestFloorDivideOpCase" self.cls = TestFloorDivideOp self.inputs = [ { "x_shape": [1024], "y_shape": [1024], }, ] self.dtypes = [ { "x_dtype": "uint8", "y_dtype": "uint8", }, ] self.attrs = [ { "x_low": 1, "x_high": 10, "y_low": 1, "y_high": 10, }, ] if __name__ == "__main__": TestFloorDivideShape().run() TestFloorDivideBroadcast().run() TestFloorDivideDtype().run() TestFloorDivideUINT().run()