#!/usr/bin/env python3 # Copyright (c) 2023 CINN Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from cinn.common import * from cinn.frontend import * from op_test import OpTest, OpTestTool from op_test_helper import TestCaseHelper import paddle @OpTestTool.skip_if( not is_compiled_with_cuda(), "x86 test will be skipped due to timeout." ) class TestErfOp(OpTest): def setUp(self): print(f"\nRunning {self.__class__.__name__}: {self.case}") self.prepare_inputs() def prepare_inputs(self): self.x_np = self.random( shape=self.case["x_shape"], dtype=self.case["x_dtype"] ) def build_paddle_program(self, target): x = paddle.to_tensor(self.x_np, stop_gradient=True) out = paddle.erf(x) self.paddle_outputs = [out] def build_cinn_program(self, target): builder = NetBuilder("unary_elementwise_test") x = builder.create_input( self.nptype2cinntype(self.case["x_dtype"]), self.case["x_shape"], "x", ) out = builder.erf(x) prog = builder.build() res = self.get_cinn_output(prog, target, [x], [self.x_np], [out]) self.cinn_outputs = [res[0]] def test_check_results(self): self.check_outputs_and_grads() class TestErfOpShape(TestCaseHelper): def init_attrs(self): self.class_name = "TestErfOpShape" self.cls = TestErfOp self.inputs = [ { "x_shape": [1], }, { "x_shape": [1024], }, { "x_shape": [1, 2048], }, { "x_shape": [1, 1, 1], }, { "x_shape": [32, 64], }, { "x_shape": [16, 8, 4, 2], }, { "x_shape": [16, 8, 4, 2, 1], }, ] self.dtypes = [ { "x_dtype": "float32", } ] self.attrs = [] class TestErfOpDtype(TestCaseHelper): def init_attrs(self): self.class_name = "TestErfOpDtype" self.cls = TestErfOp self.inputs = [ { "x_shape": [32, 64], } ] self.dtypes = [ {"x_dtype": "float16", "max_relative_error": 1e-3}, { "x_dtype": "float32", }, { "x_dtype": "float64", }, ] self.attrs = [] if __name__ == "__main__": TestErfOpShape().run() TestErfOpDtype().run()