# Copyright (c) 2023 CINN Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from cinn.common import * from cinn.frontend import * from op_test import OpTest, OpTestTool from op_test_helper import TestCaseHelper import paddle @OpTestTool.skip_if( not is_compiled_with_cuda(), "x86 test will be skipped due to timeout." ) class TestDropoutInferOp(OpTest): def setUp(self): """Preparation before unittest""" # Print current case name and attributes print(f"\nRunning {self.__class__.__name__}: {self.case}") self.prepare_inputs() def prepare_inputs(self): """Construct inputs and attributes for unittest""" # We initialize the input data using numpy self.x_np = self.random( shape=self.case["x_shape"], dtype=self.case["x_dtype"] ) if self.case["mode"] == 'upscale_in_train': self.case["cinn_mode"] = 'upscale_in_train' elif self.case["mode"] == 'downscale_in_infer': self.case["cinn_mode"] = 'downgrade_in_infer' else: raise f"Unknown mode for dropout_infer: {self.case['mode']}" def build_paddle_program(self, target): """Test in paddle and get result from paddle""" # Convert data from numpy to paddle tensor x = paddle.to_tensor(self.x_np, stop_gradient=True) # Test dropout op out = paddle.nn.functional.dropout( x, p=self.case["p"], mode=self.case["mode"], training=False ) # Set paddle output self.paddle_outputs = [out] def build_cinn_program(self, target): """Test in CINN and get result from CINN""" builder = NetBuilder("dropout_infer") # Create input tensor for CINN x = builder.create_input( self.nptype2cinntype(self.case["x_dtype"]), self.case["x_shape"], "x", ) # Test dropout op out = builder.dropout_infer(x, self.case["p"], self.case["cinn_mode"]) # Build CINN program and get result prog = builder.build() res = self.get_cinn_output(prog, target, [x], [self.x_np], [out]) self.cinn_outputs = [res[0]] def test_check_results(self): """Check if the result of Paddle is consistent with the result of CINN""" max_relative_error = ( self.case["max_relative_error"] if "max_relative_error" in self.case else 1e-5 ) self.check_outputs_and_grads(max_relative_error=max_relative_error) class TestDropoutInferAll(TestCaseHelper): def init_attrs(self): """Initialize attributes for all test cases""" # Set class name for test cases, will be named by following rules: {class_name}{No} self.class_name = "TestDropoutInferOpCase" # Set base class for test cases self.cls = TestDropoutInferOp # Initialize shape for test cases self.inputs = [ { "x_shape": [1], }, { "x_shape": [1024], }, { "x_shape": [512, 256], }, { "x_shape": [128, 64, 32], }, { "x_shape": [16, 8, 4, 2], }, { "x_shape": [16, 8, 4, 2, 1], }, ] # Initialize dtype for test cases self.dtypes = [ { "x_dtype": "float32", }, { "x_dtype": "float64", }, ] # Initialize attributes for test cases self.attrs = [ {"p": 0.1, "mode": "upscale_in_train"}, {"p": 0.5, "mode": "downscale_in_infer"}, {"p": 0.7, "mode": "upscale_in_train"}, {"p": 0.9, "mode": "downscale_in_infer"}, ] if __name__ == "__main__": TestDropoutInferAll().run()