# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy import op_test import paddle import paddle.fluid as fluid import paddle.fluid.framework as framework import paddle.fluid.layers as layers paddle.enable_static() class TestAssignValueOp(op_test.OpTest): def setUp(self): self.op_type = "assign_value" self.inputs = {} self.attrs = {} self.init_data() self.attrs["shape"] = self.value.shape self.attrs["dtype"] = framework.convert_np_dtype_to_dtype_( self.value.dtype) self.outputs = {"Out": self.value} def init_data(self): self.value = numpy.random.random(size=(2, 5)).astype(numpy.float32) self.attrs["fp32_values"] = [float(v) for v in self.value.flat] def test_forward(self): self.check_output() class TestAssignValueOp2(TestAssignValueOp): def init_data(self): self.value = numpy.random.random(size=(2, 5)).astype(numpy.int32) self.attrs["int32_values"] = [int(v) for v in self.value.flat] class TestAssignValueOp3(TestAssignValueOp): def init_data(self): self.value = numpy.random.random(size=(2, 5)).astype(numpy.int64) self.attrs["int64_values"] = [int(v) for v in self.value.flat] class TestAssignValueOp4(TestAssignValueOp): def init_data(self): self.value = numpy.random.choice(a=[False, True], size=(2, 5)).astype(numpy.bool) self.attrs["bool_values"] = [int(v) for v in self.value.flat] class TestAssignApi(unittest.TestCase): def setUp(self): self.init_dtype() self.value = (-100 + 200 * numpy.random.random(size=(2, 5))).astype( self.dtype) self.place = fluid.CUDAPlace( 0) if fluid.is_compiled_with_cuda() else fluid.CPUPlace() def init_dtype(self): self.dtype = "float32" def test_assign(self): main_program = fluid.Program() with fluid.program_guard(main_program): x = layers.create_tensor(dtype=self.dtype) layers.assign(input=self.value, output=x) exe = fluid.Executor(self.place) [fetched_x] = exe.run(main_program, feed={}, fetch_list=[x]) self.assertTrue(numpy.array_equal(fetched_x, self.value), "fetch_x=%s val=%s" % (fetched_x, self.value)) self.assertEqual(fetched_x.dtype, self.value.dtype) class TestAssignApi2(TestAssignApi): def init_dtype(self): self.dtype = "int32" class TestAssignApi3(TestAssignApi): def init_dtype(self): self.dtype = "int64" class TestAssignApi4(TestAssignApi): def setUp(self): self.init_dtype() self.value = numpy.random.choice(a=[False, True], size=(2, 5)).astype(numpy.bool) self.place = fluid.CUDAPlace( 0) if fluid.is_compiled_with_cuda() else fluid.CPUPlace() def init_dtype(self): self.dtype = "bool" if __name__ == '__main__': unittest.main()