# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import paddle from paddle.nn.utils.clip_grad_value_ import clip_grad_value_ class TestClipGradValue(unittest.TestCase): def test_basic(self): run_test_equal_np( self, shape=[16, 16], dtype=np.float32, clip_value=1, ) run_test_equal_np( self, shape=(100,), dtype=np.float32, clip_value=0.1, ) run_test_equal_np( self, shape=[4, 8, 16], dtype=np.float32, clip_value=0 ) run_test_equal_ClipGradByValue( self, shape=[16, 16], dtype=np.float32, clip_value=1, ) run_test_equal_ClipGradByValue( self, shape=(100,), dtype=np.float32, clip_value=0.1, ) run_test_equal_ClipGradByValue( self, shape=[4, 8, 16], dtype=np.float32, clip_value=0 ) def test_errors(self): def TestValueError(): input_pd = paddle.to_tensor( np.random.random([1, 2]).astype(np.float32) ) input_pd.grad = paddle.to_tensor( np.random.random([1, 2]).astype(np.float32) ) clip_grad_value_(input_pd, clip_value=-1) self.assertRaises(ValueError, TestValueError) def TestRuntimeErrorStaticMode(): paddle.enable_static() input_pd = paddle.to_tensor( np.random.random([1, 2]).astype(np.float32) ) input_pd.grad = paddle.to_tensor( np.random.random([1, 2]).astype(np.float32) ) clip_grad_value_(input_pd, clip_value=1) paddle.disable_static() self.assertRaises(RuntimeError, TestRuntimeErrorStaticMode) def run_test_equal_np( self, shape, dtype, clip_value, ): input = np.random.random(shape).astype(dtype) grad = np.random.random(shape).astype(dtype) input_pd = paddle.to_tensor(input) input_pd.grad = paddle.to_tensor(grad) output = np.clip(grad, a_min=-clip_value, a_max=clip_value) clip_grad_value_( input_pd, clip_value=clip_value, ) np.testing.assert_allclose( input_pd.grad.numpy(), output, rtol=1e-05, atol=1e-05, equal_nan=False, ) def run_test_equal_ClipGradByValue( self, shape, dtype, clip_value, ): input = np.random.random(shape).astype(dtype) grad = np.random.random(shape).astype(dtype) input_pd = paddle.to_tensor(input) input_pd.grad = paddle.to_tensor(grad) clip = paddle.nn.ClipGradByValue(max=clip_value, min=-clip_value) output = clip([(input_pd, input_pd.grad)])[0][1] clip_grad_value_( input_pd, clip_value=clip_value, ) np.testing.assert_allclose( input_pd.grad, output, rtol=1e-05, atol=1e-05, equal_nan=False, ) if __name__ == '__main__': unittest.main()