# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import reduce from legacy_test import nets from legacy_test.test_dist_base import TestDistRunnerBase, runtime_main import paddle from paddle import fluid from paddle.distributed import fleet paddle.enable_static() DTYPE = "float32" paddle.dataset.mnist.fetch() # Fix seed for test fluid.default_startup_program().random_seed = 1 fluid.default_main_program().random_seed = 1 def cnn_model(data): conv_pool_1 = nets.simple_img_conv_pool( input=data, filter_size=5, num_filters=20, pool_size=2, pool_stride=2, act="relu", param_attr=fluid.ParamAttr( initializer=paddle.nn.initializer.Constant(value=0.01) ), ) conv_pool_2 = nets.simple_img_conv_pool( input=conv_pool_1, filter_size=5, num_filters=50, pool_size=2, pool_stride=2, act="relu", param_attr=fluid.ParamAttr( initializer=paddle.nn.initializer.Constant(value=0.01) ), ) SIZE = 10 input_shape = conv_pool_2.shape param_shape = [reduce(lambda a, b: a * b, input_shape[1:], 1)] + [SIZE] scale = (2.0 / (param_shape[0] ** 2 * SIZE)) ** 0.5 with fluid.device_guard("gpu:1"): predict = paddle.static.nn.fc( x=conv_pool_2, size=SIZE, activation="softmax", weight_attr=fluid.param_attr.ParamAttr( initializer=paddle.nn.initializer.Constant(value=0.01) ), ) # To cover @RENAMED@GRADIENT predict2 = paddle.static.nn.fc( x=conv_pool_1, size=SIZE, activation="softmax", weight_attr=fluid.param_attr.ParamAttr( initializer=paddle.nn.initializer.Constant(value=0.01) ), ) predict += predict2 return predict class TestDistMnist2x2(TestDistRunnerBase): def get_model(self, batch_size=2, use_dgc=False, dist_strategy=None): # Input data with fluid.device_guard("gpu:0"): images = paddle.static.data( name='pixel', shape=[-1, 1, 28, 28], dtype=DTYPE ) label = paddle.static.data( name='label', shape=[-1, 1], dtype='int64' ) if dist_strategy: data_loader = fluid.io.DataLoader.from_generator( feed_list=[images, label], capacity=64, use_double_buffer=False, iterable=False, ) # Train program predict = cnn_model(images) with fluid.device_guard("gpu:1"): cost = paddle.nn.functional.cross_entropy( input=predict, label=label, reduction='none', use_softmax=False ) avg_cost = paddle.mean(x=cost) # Evaluator with fluid.device_guard("gpu:1"): batch_size_tensor = paddle.tensor.create_tensor(dtype='int64') batch_acc = paddle.static.accuracy( input=predict, label=label, total=batch_size_tensor ) inference_program = fluid.default_main_program().clone() base_lr = self.lr passes = [30, 60, 80, 90] steps_per_pass = 10 bd = [steps_per_pass * p for p in passes] lr = [base_lr * (0.1**i) for i in range(len(bd) + 1)] lr_val = fluid.layers.piecewise_decay(boundaries=bd, values=lr) opt = fluid.optimizer.Momentum( learning_rate=lr_val, momentum=0.9, grad_clip=paddle.nn.ClipGradByGlobalNorm(clip_norm=1.0), ) acc_steps = 2 # accumulated steps for pipeline if dist_strategy: # Reader train_reader = paddle.batch( paddle.dataset.mnist.test(), batch_size=batch_size ) test_reader = paddle.batch( paddle.dataset.mnist.test(), batch_size=batch_size ) fleet.init(is_collective=True) strategy = fleet.DistributedStrategy() strategy.pipeline = True strategy.amp = True strategy.pipeline_configs = { 'micro_batch_size': batch_size, 'schedule_mode': 'F-then-B', 'accumulate_steps': acc_steps, } dist_opt = fleet.distributed_optimizer( optimizer=opt, strategy=strategy ) dist_opt.minimize(avg_cost) else: opt.minimize(avg_cost) # Reader train_reader = paddle.batch( paddle.dataset.mnist.test(), batch_size=batch_size * acc_steps ) test_reader = paddle.batch( paddle.dataset.mnist.test(), batch_size=batch_size * acc_steps ) if dist_strategy: return ( inference_program, avg_cost, train_reader, test_reader, batch_acc, predict, data_loader, ) else: return ( inference_program, avg_cost, train_reader, test_reader, batch_acc, predict, ) if __name__ == "__main__": runtime_main(TestDistMnist2x2)