# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import random import sys import unittest import numpy as np sys.path.append('../rnn') from convert import get_params_for_net from get_test_cover_info import ( XPUOpTestWrapper, create_test_class, get_xpu_op_support_types, ) from op_test_xpu import XPUOpTest from rnn_numpy import LSTM import paddle from paddle.fluid import core random.seed(2) np.set_printoptions(threshold=np.inf) paddle.enable_static() class XPUTestRNNOp(XPUOpTestWrapper): def __init__(self): self.op_name = 'rnn' self.use_dynamic_create_class = False class TestRNNOp(XPUOpTest): def setUp(self): self.init_size() self.init_dtype() self.op_type = "rnn" self.place = paddle.XPUPlace(0) self.sequence_length = np.array([12, 11, 10, 9, 8], dtype=np.int32) self.num_layers = 1 self.is_bidirec = False self.set_attrs() self.mode = "LSTM" self.is_test = False self.dropout = 0.0 self.direction_num = 2 if self.is_bidirec else 1 direction = "bidirectional" if self.is_bidirec else "forward" input = np.random.uniform( low=-0.1, high=0.1, size=(self.seq_length, self.batch_size, self.input_size), ).astype(self.dtype) input[11][1:][:] = 0 input[10][2:][:] = 0 input[9][3:][:] = 0 input[8][4:][:] = 0 rnn1 = LSTM( self.input_size, self.hidden_size, num_layers=self.num_layers, time_major=True, direction=direction, dropout=self.dropout, dtype=self.dtype, ) flat_w = get_params_for_net(rnn1) output, (last_hidden, last_cell) = rnn1( input, sequence_length=self.sequence_length ) init_h = np.zeros( ( self.num_layers * self.direction_num, self.batch_size, self.hidden_size, ) ).astype(self.dtype) init_c = np.zeros( ( self.num_layers * self.direction_num, self.batch_size, self.hidden_size, ) ).astype(self.dtype) state_out = np.ndarray(300).astype("uint8") self.inputs = { 'Input': input, 'WeightList': flat_w, 'PreState': [('init_h', init_h), ('init_c', init_c)], 'SequenceLength': self.sequence_length, } if self.sequence_length is None: self.inputs = { 'Input': input, 'WeightList': flat_w, 'PreState': [('init_h', init_h), ('init_c', init_c)], } self.attrs = { 'dropout_prob': self.dropout, 'is_bidirec': self.is_bidirec, 'input_size': self.input_size, 'hidden_size': self.hidden_size, 'num_layers': self.num_layers, 'mode': self.mode, 'is_test': self.is_test, } self.outputs = { 'Out': output, "State": [ ('last_hidden', last_hidden), ('last_cell', last_cell), ], 'Reserve': np.ndarray(400).astype("uint8"), 'DropoutState': state_out, } def init_dtype(self): self.dtype = self.in_type def set_xpu(self): self.__class__.use_xpu = True self.__class__.no_need_check_grad = False self.__class__.op_type = self.in_type def test_check_output(self): self.check_output_with_place( self.place, atol=0.01, no_check_set=['Reserve', 'DropoutState'] ) def test_grad(self): if not self.is_test: var_name_list = self.get_weight_names() grad_check_list = ['Input', 'init_h', 'init_c'] grad_check_list.extend(var_name_list) self.check_grad_with_place( self.place, set(grad_check_list), ['Out', 'last_hidden', 'last_cell'], ) def init_size(self): self.seq_length = 12 self.batch_size = 5 self.input_size = 3 self.hidden_size = 2 def get_weight_names(self): weight_names = [] for i in range(self.num_layers): for j in range(0, 2 * self.direction_num): weight_names.append(f"{i}.weight_{j}") for i in range(self.num_layers): for j in range(0, 2 * self.direction_num): weight_names.append(f"{i}.bias_{j}") return weight_names def set_attrs(self): pass class TestRNNOp1(TestRNNOp): def set_attrs(self): self.sequence_length = None class TestRNNOp2(TestRNNOp): def set_attrs(self): self.num_layers = 1 self.is_bidirec = True class TestRNNOp3(TestRNNOp): def set_attrs(self): self.num_layers = 2 self.is_bidirec = False class TestRNNOp4(TestRNNOp): def set_attrs(self): self.num_layers = 3 self.is_bidirec = False class TestRNNOp5(TestRNNOp): def set_attrs(self): self.num_layers = 2 self.is_bidirec = True class TestRNNOp6(TestRNNOp): def set_attrs(self): self.num_layers = 2 self.is_bidirec = True self.sequence_length = None class TestRNNOp7(TestRNNOp): def set_attrs(self): self.num_layers = 3 self.is_bidirec = True support_types = get_xpu_op_support_types('rnn') for stype in support_types: create_test_class( globals(), XPUTestRNNOp, stype, ignore_device_version=[core.XPUVersion.XPU1], ) if __name__ == '__main__': unittest.main()