# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import unittest import numpy as np from eager_op_test import OpTest from get_test_cover_info import ( XPUOpTestWrapper, create_test_class, get_xpu_op_support_types, ) from op_test_xpu import XPUOpTest import paddle import paddle.nn.functional as F paddle.enable_static() class TestActivationOPBase(XPUOpTest): def setUp(self): self.place = paddle.XPUPlace(0) self.init_dtype() self.set_shape() self.set_case() def set_shape(self): self.shape = [11, 17] def set_case(self): self.op_type = 'exp' x = np.random.uniform(-1, 1, self.shape).astype(self.dtype) out = np.exp(x) self.attrs = {'use_xpu': True} self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)} self.outputs = {'Out': out} def init_dtype(self): self.dtype = np.float32 def test_check_output(self): self.check_output_with_place(self.place) def test_check_grad(self): self.check_grad_with_place(self.place, ['X'], 'Out') class XPUTestExpOP(XPUOpTestWrapper): def __init__(self): self.op_name = 'exp' self.use_dynamic_create_class = False class XPUTestExp(TestActivationOPBase): def set_case(self): self.op_type = 'exp' self.dtype = self.in_type x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype) out = np.exp(x) self.attrs = {'use_xpu': True} self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)} self.outputs = {'Out': out} class XPUTestExp_ZeroDIm(TestActivationOPBase): def set_shape(self): self.shape = [] support_types = get_xpu_op_support_types('exp') for stype in support_types: create_test_class(globals(), XPUTestExpOP, stype) class XPUTestSiluOP(XPUOpTestWrapper): def __init__(self): self.op_name = 'silu' self.use_dynamic_create_class = False class XPUTestSilu(TestActivationOPBase): def set_case(self): self.op_type = "silu" self.dtype = self.in_type self.init_shape() np.random.seed(1024) x = np.random.uniform(-1, 1, self.shape).astype(self.dtype) out = x / (np.exp(-x) + 1) self.inputs = {'X': x} self.outputs = {'Out': out} self.attrs = {'use_xpu': True} def test_check_output(self): self.set_env() self.check_output_with_place(self.place) self.delete_env() def test_check_grad(self): self.set_env() self.check_grad_with_place(self.place, ['X'], 'Out') self.delete_env() def init_shape(self): self.shape = [11, 17] def set_env(self): pass def delete_env(self): pass class TestSilu_ZeroDim(XPUTestSilu): def init_shape(self): self.shape = [] class TestSilu_LUT(XPUTestSilu): def set_env(self): # set "XPU_PADDLE_ACT_LUT" env to enable lut os.environ['XPU_PADDLE_ACT_LUT'] = "1" def delete_env(self): if os.getenv('XPU_PADDLE_ACT_LUT'): del os.environ['XPU_PADDLE_ACT_LUT'] class TestSiluAPI(unittest.TestCase): # test paddle.nn.Silu, paddle.nn.functional.silu def setUp(self): self.x_np = np.random.uniform(-1, 1, [11, 17]).astype('float32') self.place = paddle.XPUPlace(0) def test_static_api(self): paddle.enable_static() with paddle.static.program_guard(paddle.static.Program()): x = paddle.static.data('X', [11, 17]) out1 = F.silu(x) m = paddle.nn.Silu() out2 = m(x) exe = paddle.static.Executor(self.place) res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2]) out_ref = self.x_np / (1 + np.exp(-self.x_np)) for r in res: np.testing.assert_allclose(out_ref, r, rtol=1e-05) def test_dygraph_api(self): paddle.disable_static(self.place) x = paddle.to_tensor(self.x_np) out1 = F.silu(x) m = paddle.nn.Silu() out2 = m(x) out_ref = self.x_np / (1 + np.exp(-self.x_np)) for r in [out1, out2]: np.testing.assert_allclose(out_ref, r.numpy(), rtol=1e-05) paddle.enable_static() def test_errors(self): with paddle.static.program_guard(paddle.static.Program()): # The input type must be Variable. self.assertRaises(TypeError, F.silu, 1) # The input dtype must be float16, float32, float64. x_int32 = paddle.static.data( name='x_int32', shape=[11, 17], dtype='int32' ) self.assertRaises(TypeError, F.silu, x_int32) # support the input dtype is float16 x_fp16 = paddle.static.data( name='x_fp16', shape=[11, 17], dtype='float16' ) F.silu(x_fp16) support_types = get_xpu_op_support_types('silu') for stype in support_types: create_test_class(globals(), XPUTestSiluOP, stype) class XPUTestSigmoidOP(XPUOpTestWrapper): def __init__(self): self.op_name = 'sigmoid' self.use_dynamic_create_class = False class XPUTestSigmoid(TestActivationOPBase): def set_case(self): self.op_type = "sigmoid" self.dtype = self.in_type self.init_config() out = 1 / (1 + np.exp(-self.x)) self.attrs = {'use_xpu': True} self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(self.x)} self.outputs = {'Out': out} def init_config(self): self.x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype) class XPUTestSigmoid_ZeroDIm(XPUTestSigmoid): def init_config(self): self.x = np.random.uniform(-2, 2, []).astype(self.dtype) class XPUTestSigmoid2(XPUTestSigmoid): def init_config(self): self.x = np.random.uniform(-2, 2, [100]).astype(self.dtype) class XPUTestSigmoid3(XPUTestSigmoid): def init_config(self): self.x = np.random.uniform(-2, 2, [10, 12, 15]).astype(self.dtype) class XPUTestSigmoid4(XPUTestSigmoid): def init_config(self): self.x = np.random.uniform(-2, 2, [19, 19]).astype(self.dtype) class XPUTestSigmoid5(XPUTestSigmoid): def init_config(self): self.x = np.random.uniform(-2, 2, [10, 20, 30, 40]).astype( self.dtype ) support_types = get_xpu_op_support_types('sigmoid') for stype in support_types: create_test_class(globals(), XPUTestSigmoidOP, stype) class XPUTestTanhOP(XPUOpTestWrapper): def __init__(self): self.op_name = 'tanh' self.use_dynamic_create_class = False class XPUTestTanh(TestActivationOPBase): def set_case(self): self.op_type = "tanh" self.dtype = self.in_type x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype) out = np.tanh(x) self.attrs = {'use_xpu': True} self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)} self.outputs = {'Out': out} support_types = get_xpu_op_support_types('tanh') for stype in support_types: create_test_class(globals(), XPUTestTanhOP, stype) class XPUTestSqrtOP(XPUOpTestWrapper): def __init__(self): self.op_name = 'sqrt' self.use_dynamic_create_class = False class XPUTestSqrt(TestActivationOPBase): def set_case(self): self.op_type = "sqrt" self.dtype = self.in_type x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype) out = np.sqrt(x) self.attrs = {'use_xpu': True} self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)} self.outputs = {'Out': out} support_types = get_xpu_op_support_types('sqrt') for stype in support_types: create_test_class(globals(), XPUTestSqrtOP, stype) class XPUTestFloorOP(XPUOpTestWrapper): def __init__(self): self.op_name = 'floor' self.use_dynamic_create_class = False class XPUTestSqrt(TestActivationOPBase): def set_case(self): self.op_type = "floor" self.dtype = self.in_type x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype) out = np.floor(x) self.attrs = {'use_xpu': True} self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)} self.outputs = {'Out': out} def test_check_grad(self): self.check_output_with_place(self.place) support_types = get_xpu_op_support_types('floor') for stype in support_types: create_test_class(globals(), XPUTestFloorOP, stype) class XPUTestAbsOP(XPUOpTestWrapper): def __init__(self): self.op_name = 'abs' self.use_dynamic_create_class = False class XPUTestAbs(TestActivationOPBase): def set_case(self): self.op_type = "abs" self.dtype = self.in_type x = np.random.uniform(-1, 1, [4, 25]).astype(self.dtype) # Because we set delta = 0.005 in calculating numeric gradient, # if x is too small, such as 0.002, x_neg will be -0.003 # x_pos will be 0.007, so the numeric gradient is inaccurate. # we should avoid this x[np.abs(x) < 0.005] = 0.02 out = np.abs(x) self.attrs = {'use_xpu': True} self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)} self.outputs = {'Out': out} support_types = get_xpu_op_support_types('abs') for stype in support_types: create_test_class(globals(), XPUTestAbsOP, stype) class XPUTestReluOP(XPUOpTestWrapper): def __init__(self): self.op_name = 'relu' self.use_dynamic_create_class = False class XPUTestRelu(TestActivationOPBase): def set_case(self): self.op_type = "relu" self.dtype = self.in_type x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype) # The same reason with TestAbs x[np.abs(x) < 0.005] = 0.02 out = np.maximum(x, 0) self.attrs = {'use_xpu': True} self.inputs = {'X': x} self.outputs = {'Out': out} support_types = get_xpu_op_support_types('relu') for stype in support_types: create_test_class(globals(), XPUTestReluOP, stype) class XPUTestGeluOP(XPUOpTestWrapper): def __init__(self): self.op_name = 'gelu' self.use_dynamic_create_class = False class XPUTestGelu(TestActivationOPBase): def set_case(self): self.op_type = "gelu" self.dtype = self.in_type approximate = False x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype) out = gelu(x, approximate) self.inputs = {'X': x} self.outputs = {'Out': out} self.attrs = {"approximate": approximate, 'use_xpu': True} class XPUTestGeluApproximate(TestActivationOPBase): def set_case(self): self.op_type = "gelu" self.dtype = self.in_type approximate = True x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype) out = gelu(x, approximate) self.inputs = {'X': x} self.outputs = {'Out': out} self.attrs = {"approximate": approximate, 'use_xpu': True} support_types = get_xpu_op_support_types('gelu') for stype in support_types: create_test_class(globals(), XPUTestGeluOP, stype) def gelu(x, approximate): from scipy.special import erf if approximate: y_ref = ( 0.5 * x * ( 1.0 + np.tanh(np.sqrt(2 / np.pi) * (x + 0.044715 * np.power(x, 3))) ) ) else: y_ref = 0.5 * x * (1 + erf(x / np.sqrt(2))) return y_ref.astype(x.dtype) class XPUTestHardSwishOP(XPUOpTestWrapper): def __init__(self): self.op_name = 'hard_swish' self.use_dynamic_create_class = False class XPUTestHardSwish(TestActivationOPBase): def set_case(self): self.op_type = "hard_swish" self.dtype = self.in_type x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype) offset = 3.0 threshold = 6.0 scale = 6.0 out = hard_swish(x, offset, threshold, scale) self.inputs = {'X': x} self.outputs = {'Out': out} self.attrs = {'use_xpu': True} support_types = get_xpu_op_support_types('hard_swish') for stype in support_types: create_test_class(globals(), XPUTestHardSwishOP, stype) def hard_swish(x, offset, threshold, scale): y_ref = np.minimum(threshold, np.maximum(0, x + offset)) * x / scale return y_ref.astype(x.dtype) class XPUTestLogOP(XPUOpTestWrapper): def __init__(self): self.op_name = 'log' self.use_dynamic_create_class = False class XPUTestLog(TestActivationOPBase): def set_case(self): self.op_type = "log" self.dtype = self.in_type x = np.random.uniform(0.1, 1, self.shape).astype(self.dtype) out = np.log(x) self.attrs = {'use_xpu': True} self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)} self.outputs = {'Out': out} class TestLogCase_ZeroDim(XPUTestLog): def set_shape(self): self.shape = [] class TestLogCase1(XPUTestLog): def set_shape(self): self.shape = [1, 11, 17] class TestLogCase2(XPUTestLog): def set_shape(self): self.shape = [2, 2, 2] class TestLogCase3(XPUTestLog): def set_shape(self): self.shape = [2] class TestLogCase4(XPUTestLog): def set_shape(self): self.shape = [1, 2, 3, 4] support_types = get_xpu_op_support_types('log') for stype in support_types: create_test_class(globals(), XPUTestLogOP, stype) class XPUTestSquareOP(XPUOpTestWrapper): def __init__(self): self.op_name = 'square' self.use_dynamic_create_class = False class XPUTestSquare(TestActivationOPBase): def set_case(self): self.op_type = "square" self.dtype = self.in_type self.init_config() out = np.square(self.x) self.attrs = {'use_xpu': True} self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(self.x)} self.outputs = {'Out': out} def init_config(self): self.x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype) class XPUTestSquare_ZeroDim(XPUTestSquare): def init_config(self): self.x = np.random.uniform(-2, 2, []).astype(self.dtype) class XPUTestSquare2(XPUTestSquare): def init_config(self): self.x = np.random.uniform(-2, 2, [100]).astype(self.dtype) class XPUTestSquare3(XPUTestSquare): def init_config(self): self.x = np.random.uniform(-2, 2, [1, 15, 19]).astype(self.dtype) class XPUTestSquare4(XPUTestSquare): def init_config(self): self.x = np.random.uniform(-2, 2, [100, 10]).astype(self.dtype) class XPUTestSquare5(XPUTestSquare): def init_config(self): self.x = np.random.uniform(-2, 2, [1, 2, 5, 17]).astype(self.dtype) support_types = get_xpu_op_support_types('square') for stype in support_types: create_test_class(globals(), XPUTestSquareOP, stype) class XPUTestPowOP(XPUOpTestWrapper): def __init__(self): self.op_name = 'pow' self.use_dynamic_create_class = False class XPUTestPowBase(TestActivationOPBase): def set_case(self): self.op_type = "pow" self.dtype = self.in_type self.init_config() out = np.power(self.x, self.factor) self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(self.x)} self.attrs = {'factor': self.factor, 'use_xpu': True} self.outputs = {'Out': out} def init_config(self): self.x = np.random.uniform(-1, 2, [12]).astype(self.dtype) self.factor = 3.0 class XPUTestPow1(XPUTestPowBase): def init_config(self): self.x = np.random.uniform(-1, 1, [1024, 8]).astype(self.dtype) self.factor = 1 class XPUTestPow2(XPUTestPowBase): def init_config(self): self.x = np.random.uniform(-1, 1, [1024, 8]).astype(self.dtype) self.factor = 2 class XPUTestPow3(XPUTestPowBase): def init_config(self): self.x = np.random.uniform(-2, 2, [4, 512, 15, 15]).astype( self.dtype ) self.factor = 3 class XPUTestPow4(XPUTestPowBase): def init_config(self): self.x = np.random.uniform(-2, 2, [4, 256, 22, 22]).astype( self.dtype ) self.factor = 4 class XPUTestPow5(XPUTestPowBase): def init_config(self): self.x = np.random.uniform(0, 1, [4, 256, 22, 22]).astype( self.dtype ) self.factor = 1.2 class XPUTestPow6(XPUTestPowBase): def init_config(self): self.x = np.random.uniform(0, 1, [1024, 8]).astype(self.dtype) self.factor = 3.2 support_types = get_xpu_op_support_types('pow') for stype in support_types: create_test_class(globals(), XPUTestPowOP, stype) class XPUTestLeakyReluOP(XPUOpTestWrapper): def __init__(self): self.op_name = 'leaky_relu' self.use_dynamic_create_class = False class XPUTestLeakyRelu(TestActivationOPBase): def set_case(self): self.op_type = "leaky_relu" self.dtype = self.in_type x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype) alpha = np.random.uniform( 0, 1, ) out = leaky_relu(x, alpha) self.inputs = {'X': x} self.outputs = {'Out': out} self.attrs = {'use_xpu': True, 'alpha': alpha} support_types = get_xpu_op_support_types('leaky_relu') for stype in support_types: create_test_class(globals(), XPUTestLeakyReluOP, stype) def leaky_relu(x, alpha): if alpha < 1: y_ref = np.maximum(x, alpha * x) else: y_ref = np.minimum(x, alpha * x) return y_ref.astype(x.dtype) class XPUTestReciprocalOP(XPUOpTestWrapper): def __init__(self): self.op_name = 'reciprocal' self.use_dynamic_create_class = False class XPUTestRecipocal(TestActivationOPBase): def set_case(self): self.op_type = "reciprocal" self.dtype = self.in_type np.random.seed(1024) x = np.random.uniform(1, 2, [1111, 1117]).astype(self.dtype) out = np.reciprocal(x) self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)} self.outputs = {'Out': out} self.attrs = {'use_xpu': True} support_types = get_xpu_op_support_types('reciprocal') for stype in support_types: create_test_class(globals(), XPUTestReciprocalOP, stype) class XPUTestSoftPlusOP(XPUOpTestWrapper): def __init__(self): self.op_name = 'softplus' self.use_dynamic_create_class = False class XPUTestSoftPlusBase(TestActivationOPBase): def set_case(self): self.op_type = "softplus" self.dtype = self.in_type self.init_config() beta = np.random.uniform(0, 1) threshold = np.random.uniform(0, 1) out = ref_softplus(self.x, beta, threshold) self.inputs = {'X': self.x} self.outputs = {'Out': out} self.attrs = {'use_xpu': True, 'beta': beta, 'threshold': threshold} def init_config(self): self.x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype) class XPUTestSoftPlus_ZeroDim(XPUTestSoftPlusBase): def init_config(self): self.x = np.random.uniform(-2, 2, []).astype(self.dtype) class XPUTestSoftPlus2(XPUTestSoftPlusBase): def init_config(self): self.x = np.random.uniform(-2, 2, [1024, 8]).astype(self.dtype) class XPUTestSoftPlus3(XPUTestSoftPlusBase): def init_config(self): self.x = np.random.uniform(-2, 2, [4, 512, 15, 15]).astype( self.dtype ) class XPUTestSoftPlus4(XPUTestSoftPlusBase): def init_config(self): self.x = np.random.uniform(-2, 2, [4, 256, 22, 22]).astype( self.dtype ) support_types = get_xpu_op_support_types('softplus') for stype in support_types: create_test_class(globals(), XPUTestSoftPlusOP, stype) def ref_softplus(x, beta=1, threshold=20): x_beta = beta * x out = np.select( [x_beta <= threshold, x_beta > threshold], [np.log(1 + np.exp(x_beta)) / beta, x], ) return out # XPU_KP unittests, these ops can be found from xpu_op_kpfirst_list.h class XPUTestBReluOP(XPUOpTestWrapper): def __init__(self): self.op_name = 'brelu' self.use_dynamic_create_class = False class XPUTestBRelu(TestActivationOPBase): def set_case(self): self.op_type = "brelu" self.dtype = self.in_type np.random.seed(1024) x = np.random.uniform(-5, 10, [10, 12]).astype(self.dtype) t_min = 1.0 t_max = 4.0 # The same with TestAbs x[np.abs(x - t_min) < 0.005] = t_min + 0.02 x[np.abs(x - t_max) < 0.005] = t_max + 0.02 t = np.copy(x) t[t < t_min] = t_min t[t > t_max] = t_max self.inputs = {'X': x} self.outputs = {'Out': t} self.attrs = {'use_xpu': True, 't_min': t_min, 't_max': t_max} support_types = get_xpu_op_support_types('brelu') for stype in support_types: create_test_class(globals(), XPUTestBReluOP, stype) class XPUTestCeilOP(XPUOpTestWrapper): def __init__(self): self.op_name = 'ceil' self.use_dynamic_create_class = False class XPUTestCeil(TestActivationOPBase): def set_case(self): self.op_type = "ceil" self.dtype = self.in_type np.random.seed(1024) x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype) out = np.ceil(x) self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)} self.outputs = {'Out': out} self.attrs = {'use_xpu': True} support_types = get_xpu_op_support_types('ceil') for stype in support_types: create_test_class(globals(), XPUTestCeilOP, stype) class XPUTestCeluOP(XPUOpTestWrapper): def __init__(self): self.op_name = 'celu' self.use_dynamic_create_class = False class XPUTestCelu(TestActivationOPBase): def set_case(self): self.op_type = "celu" self.dtype = self.in_type alpha = 1.5 x = np.random.uniform(-3, 3, [10, 12]).astype(self.dtype) out = ref_celu(x, alpha) self.inputs = {'X': x} self.outputs = {'Out': out} self.attrs = {'use_xpu': True, 'alpha': alpha} support_types = get_xpu_op_support_types('celu') for stype in support_types: create_test_class(globals(), XPUTestCeluOP, stype) def ref_celu(x, alpha): out_ref = np.maximum(0, x) + np.minimum(0, alpha * (np.exp(x / alpha) - 1)) return out_ref.astype(x.dtype) class XPUTestEluOP(XPUOpTestWrapper): def __init__(self): self.op_name = 'elu' self.use_dynamic_create_class = False class XPUTestElu(TestActivationOPBase): def set_case(self): self.op_type = "elu" self.dtype = self.in_type alpha = 1.0 x = np.random.uniform(-3, 3, [10, 12]).astype(self.dtype) out = ref_elu(x, alpha) self.inputs = {'X': x} self.outputs = {'Out': out} self.attrs = {'use_xpu': True, 'alpha': alpha} support_types = get_xpu_op_support_types('elu') for stype in support_types: create_test_class(globals(), XPUTestEluOP, stype) def ref_elu(x, alpha): out_ref = np.where(x > 0, x, alpha * (np.exp(x) - 1)) return out_ref.astype(x.dtype) class XPUTestFloorOP(XPUOpTestWrapper): def __init__(self): self.op_name = 'floor' self.use_dynamic_create_class = False class XPUTestFloor(TestActivationOPBase): def set_case(self): self.op_type = "floor" self.dtype = self.in_type np.random.seed(1024) x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype) out = np.floor(x) self.inputs = {'X': x} self.outputs = {'Out': out} self.attrs = {'use_xpu': True} support_types = get_xpu_op_support_types('floor') for stype in support_types: create_test_class(globals(), XPUTestFloorOP, stype) class XPUTestHardShrinkOP(XPUOpTestWrapper): def __init__(self): self.op_name = 'hard_shrink' self.use_dynamic_create_class = False class XPUTestHardShrink(TestActivationOPBase): def set_case(self): self.op_type = "hard_shrink" self.dtype = self.in_type threshold = 0.5 # self.set_attrs() np.random.seed(1024) x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype) * 10 out = ref_hardshrink(x, threshold) self.attrs = {'use_xpu': True} self.inputs = {'X': x} self.outputs = {'Out': out} support_types = get_xpu_op_support_types('hard_shrink') for stype in support_types: create_test_class(globals(), XPUTestHardShrinkOP, stype) def ref_hardshrink(x, threshold): out = np.copy(x) out[(out >= -threshold) & (out <= threshold)] = 0 return out class XPUTestHardSigmoidOP(XPUOpTestWrapper): def __init__(self): self.op_name = 'hard_sigmoid' self.use_dynamic_create_class = False class XPUTestHardSigmoid(TestActivationOPBase): def set_case(self): self.op_type = "hard_sigmoid" self.dtype = self.in_type self.slope = 0.166666666666667 self.offset = 0.5 x = np.random.uniform(-5, 5, [10, 12]).astype(self.dtype) lower_threshold = -self.offset / self.slope upper_threshold = (1.0 - self.offset) / self.slope # Same reason as TestAbs delta = 0.005 x[np.abs(x - lower_threshold) < delta] = lower_threshold - 0.02 x[np.abs(x - upper_threshold) < delta] = upper_threshold - 0.02 out = ref_hardsigmoid(x, self.slope, self.offset) self.attrs = { 'use_xpu': True, 'slope': self.slope, 'offset': self.offset, } self.inputs = {'X': x} self.outputs = {'Out': out} support_types = get_xpu_op_support_types('hard_sigmoid') for stype in support_types: create_test_class(globals(), XPUTestHardSigmoidOP, stype) def ref_hardsigmoid(x, slope=0.166666666666667, offset=0.5): return np.maximum(np.minimum(x * slope + offset, 1.0), 0.0).astype(x.dtype) class XPUTestLog1pOP(XPUOpTestWrapper): def __init__(self): self.op_name = 'log1p' self.use_dynamic_create_class = False class XPUTestLog1p(TestActivationOPBase): def set_case(self): self.op_type = "log1p" self.dtype = self.in_type np.random.seed(1024) x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype) out = np.log1p(x) self.inputs = {'X': x} self.outputs = {'Out': out} self.attrs = {'use_xpu': True} support_types = get_xpu_op_support_types('log1p') for stype in support_types: create_test_class(globals(), XPUTestLog1pOP, stype) class XPUTestLogsigmoidOP(XPUOpTestWrapper): def __init__(self): self.op_name = 'logsigmoid' self.use_dynamic_create_class = False class XPUTestLogsigmoid(TestActivationOPBase): def set_case(self): self.op_type = "logsigmoid" self.dtype = self.in_type np.random.seed(2048) x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype) out = np.log(1 / (1 + np.exp(-x))) self.inputs = {'X': x} self.outputs = {'Out': out} self.attrs = {'use_xpu': True} support_types = get_xpu_op_support_types('logsigmoid') for stype in support_types: create_test_class(globals(), XPUTestLogsigmoidOP, stype) class XPUTestRelu6OP(XPUOpTestWrapper): def __init__(self): self.op_name = 'relu6' self.use_dynamic_create_class = False class XPUTestRelu6(TestActivationOPBase): def set_case(self): self.op_type = "relu6" self.dtype = self.in_type np.random.seed(1024) x = np.random.uniform(-1, 10, [10, 12]).astype(self.dtype) x[np.abs(x) < 0.005] = 0.02 out = ref_relu6(x) self.attrs = {'use_xpu': True} self.inputs = {'X': x} self.outputs = {'Out': out} support_types = get_xpu_op_support_types('relu6') for stype in support_types: create_test_class(globals(), XPUTestRelu6OP, stype) def ref_relu6(x, threshold=6.0): out = np.copy(x) out[np.abs(x - threshold) < 0.005] = threshold + 0.02 out = np.minimum(np.maximum(x, 0), threshold) return out class XPUTestSiluOP(XPUOpTestWrapper): def __init__(self): self.op_name = 'silu' self.use_dynamic_create_class = False class XPUTestSilu(TestActivationOPBase): def set_case(self): self.op_type = "silu" self.dtype = self.in_type np.random.seed(1024) x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype) out = x / (np.exp(-x) + 1) self.inputs = {'X': x} self.outputs = {'Out': out} self.attrs = {'use_xpu': True} support_types = get_xpu_op_support_types('silu') for stype in support_types: create_test_class(globals(), XPUTestSiluOP, stype) class XPUTestSoftReluOP(XPUOpTestWrapper): def __init__(self): self.op_name = 'soft_relu' self.use_dynamic_create_class = False class XPUTestSoftRelu(TestActivationOPBase): def set_case(self): self.op_type = "soft_relu" self.dtype = self.in_type np.random.seed(4096) x = np.random.uniform(-3, 3, [4, 4]).astype(self.dtype) threshold = 2.0 # The same reason with TestAbs x[np.abs(x - threshold) < 0.005] = threshold + 0.02 x[np.abs(x + threshold) < 0.005] = -threshold - 0.02 t = np.copy(x) t[t < -threshold] = -threshold t[t > threshold] = threshold out = np.log(np.exp(t) + 1) self.inputs = {'X': x} self.outputs = {'Out': out} self.attrs = {'use_xpu': True, 'threshold': threshold} support_types = get_xpu_op_support_types('soft_relu') for stype in support_types: create_test_class(globals(), XPUTestSoftReluOP, stype) class XPUTestSoftSignOP(XPUOpTestWrapper): def __init__(self): self.op_name = 'softsign' self.use_dynamic_create_class = False class XPUTestSoftSign(TestActivationOPBase): def set_case(self): self.op_type = "softsign" self.dtype = self.in_type np.random.seed(1024) x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype) out = ref_softsign(x) self.inputs = {'X': x} self.outputs = {'Out': out} self.attrs = {'use_xpu': True} support_types = get_xpu_op_support_types('softsign') for stype in support_types: create_test_class(globals(), XPUTestSoftSignOP, stype) def ref_softsign(x): out = np.divide(x, 1 + np.abs(x)) return out class XPUTestSoftshrinkOP(XPUOpTestWrapper): def __init__(self): self.op_name = 'softshrink' self.use_dynamic_create_class = False class XPUTestSoftshrink(TestActivationOPBase): def set_case(self): self.op_type = "softshrink" self.dtype = self.in_type threshold = 0.5 np.random.seed(1023) x = np.random.uniform(0.25, 10, [10, 12]).astype(self.dtype) out = ref_softshrink(x, threshold) self.inputs = {'X': x} self.outputs = {'Out': out} self.attrs = {'use_xpu': True} support_types = get_xpu_op_support_types('softshrink') for stype in support_types: create_test_class(globals(), XPUTestSoftshrinkOP, stype) def ref_softshrink(x, threshold=0.5): out = np.copy(x) out = (out < -threshold) * (out + threshold) + (out > threshold) * ( out - threshold ) return out class XPUTestSwishOP(XPUOpTestWrapper): def __init__(self): self.op_name = 'swish' self.use_dynamic_create_class = False class XPUTestSwishBase(TestActivationOPBase): def set_case(self): self.op_type = "swish" self.dtype = self.in_type self.init_config() out = ref_swish(self.x) self.inputs = {'X': self.x} self.outputs = {'Out': out} self.attrs = {'use_xpu': True} def init_config(self): self.x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype) class XPUTestSwish_ZeroDim(XPUTestSwishBase): def init_config(self): self.x = np.random.uniform(-2, 2, []).astype(self.dtype) class XPUTestSwish2(XPUTestSwishBase): def init_config(self): self.x = np.random.uniform(-2, 2, [1024, 8]).astype(self.dtype) class XPUTestSwish3(XPUTestSwishBase): def init_config(self): self.x = np.random.uniform(-2, 2, [4, 512, 15, 15]).astype( self.dtype ) class XPUTestSwish4(XPUTestSwishBase): def init_config(self): self.x = np.random.uniform(-2, 2, [4, 256, 22, 22]).astype( self.dtype ) support_types = get_xpu_op_support_types('swish') for stype in support_types: create_test_class(globals(), XPUTestSwishOP, stype) def ref_swish(x): from scipy.special import expit out = x * expit(x) return out class XPUTestThresholdedReluOP(XPUOpTestWrapper): def __init__(self): self.op_name = 'thresholded_relu' self.use_dynamic_create_class = False class XPUTestThresholdedRelu(TestActivationOPBase): def set_case(self): self.op_type = "thresholded_relu" self.dtype = self.in_type threshold = 1.0 np.random.seed(1024) x = np.random.uniform(-20, 20, [10, 12]).astype(self.dtype) x[np.abs(x) < 0.005] = 0.02 out = ref_thresholded_relu(x, threshold) self.inputs = {'X': x} self.outputs = {'Out': out} self.attrs = {'use_xpu': True} support_types = get_xpu_op_support_types('thresholded_relu') for stype in support_types: create_test_class(globals(), XPUTestThresholdedReluOP, stype) def ref_thresholded_relu(x, threshold=1.0): out = (x > threshold) * x return out class XPUTestMishOP(XPUOpTestWrapper): def __init__(self): self.op_name = 'mish' self.use_dynamic_create_class = False class XPUTestMishBase(TestActivationOPBase): def set_case(self): self.op_type = "mish" self.dtype = self.in_type self.init_config() threshold = np.random.uniform(0, 1) out = ref_mish(self.x, threshold) self.inputs = {'X': self.x} self.outputs = {'Out': out} self.attrs = {'use_xpu': True, 'threshold': threshold} def init_config(self): self.x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype) class XPUTestMish_ZeroDim(XPUTestMishBase): def init_config(self): self.x = np.random.uniform(-2, 2, []).astype(self.dtype) class XPUTestMish2(XPUTestMishBase): def init_config(self): self.x = np.random.uniform(-2, 2, [1024, 8]).astype(self.dtype) class XPUTestMish3(XPUTestMishBase): def init_config(self): self.x = np.random.uniform(-2, 2, [4, 512, 15, 15]).astype( self.dtype ) class XPUTestMish4(XPUTestMishBase): def init_config(self): self.x = np.random.uniform(-2, 2, [4, 256, 22, 22]).astype( self.dtype ) support_types = get_xpu_op_support_types('mish') for stype in support_types: create_test_class(globals(), XPUTestMishOP, stype) def ref_mish(x, threshold=20): sp = np.select([x <= threshold, x > threshold], [np.log(1 + np.exp(x)), x]) out = x * np.tanh(sp) return out class XPUTestSinOP(XPUOpTestWrapper): def __init__(self): self.op_name = 'sin' self.use_dynamic_create_class = False class XPUTestSinBase(TestActivationOPBase): def set_case(self): self.op_type = "sin" self.dtype = self.in_type self.init_config() out = np.sin(self.x) self.inputs = {'X': self.x} self.outputs = {'Out': out} self.attrs = {'use_xpu': True} def init_config(self): self.x = np.random.uniform(-np.pi, np.pi, [11, 17]).astype( self.dtype ) class XPUTestSin_ZeroDim(XPUTestSinBase): def init_config(self): self.x = np.random.uniform(-np.pi, np.pi, []).astype(self.dtype) class XPUTestSin2(XPUTestSinBase): def init_config(self): self.x = np.random.uniform(-np.pi, np.pi, [1024, 8]).astype( self.dtype ) class XPUTestSin3(XPUTestSinBase): def init_config(self): self.x = np.random.uniform(-np.pi, np.pi, [4, 512, 15, 15]).astype( self.dtype ) class XPUTestSin4(XPUTestSinBase): def init_config(self): self.x = np.random.uniform(-np.pi, np.pi, [4, 256, 22, 22]).astype( self.dtype ) support_types = get_xpu_op_support_types('sin') for stype in support_types: create_test_class(globals(), XPUTestSinOP, stype) class XPUTestCosOP(XPUOpTestWrapper): def __init__(self): self.op_name = 'cos' self.use_dynamic_create_class = False class XPUTestCosBase(TestActivationOPBase): def set_case(self): self.op_type = "cos" self.dtype = self.in_type self.init_config() out = np.cos(self.x) self.inputs = {'X': self.x} self.outputs = {'Out': out} self.attrs = {'use_xpu': True} def init_config(self): self.x = np.random.uniform(-np.pi, np.pi, [11, 17]).astype( self.dtype ) class XPUTestCos_ZeroDim(XPUTestCosBase): def init_config(self): self.x = np.random.uniform(-np.pi, np.pi, []).astype(self.dtype) class XPUTestCos2(XPUTestCosBase): def init_config(self): self.x = np.random.uniform(-np.pi, np.pi, [1024, 8]).astype( self.dtype ) class XPUTestCos3(XPUTestCosBase): def init_config(self): self.x = np.random.uniform(-np.pi, np.pi, [4, 512, 15, 15]).astype( self.dtype ) class XPUTestCos4(XPUTestCosBase): def init_config(self): self.x = np.random.uniform(-np.pi, np.pi, [4, 256, 22, 22]).astype( self.dtype ) support_types = get_xpu_op_support_types('cos') for stype in support_types: create_test_class(globals(), XPUTestCosOP, stype) if __name__ == "__main__": unittest.main()