/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "hl_base.h" #include "ContextProjectionOp.h" namespace paddle { template __global__ void KeContextProjectionForward(const real* input, const int* sequence, const real* weight, real* output, int input_dim, int context_length, int context_start, int begin_pad) { int idx = threadIdx.x; int block_size = blockDim.x; int sequenceId = blockIdx.x; int seq_start = sequence[sequenceId]; int seq_end = sequence[sequenceId+1]; real value = 0; int instances = seq_end - seq_start + context_length - 1; output += seq_start * input_dim * context_length; input += seq_start * input_dim; for (int k = 0; k <= input_dim / block_size; k++) { if (idx < input_dim) { for (int i = 0; i < instances; i++) { // i + context_start; if ((i + context_start) < 0) { if (padding) { value = weight[i * input_dim + idx]; } else { continue; } } else if ((i + context_start) >= (seq_end - seq_start)) { if (padding) { value = weight[(begin_pad + i + context_start - (seq_end - seq_start)) * input_dim + idx]; } else { continue; } } else { value = input[(i + context_start) * input_dim + idx]; } int outx = (i - context_length) < 0 ? i : (context_length - 1); int outy = (i - context_length) < 0 ? 0 : (i - (context_length - 1)); real* output_r = output + outy * input_dim * context_length + outx * input_dim; for (int j = outy; j < seq_end - seq_start; j++) { output_r[idx] += value; if (j - outy == outx) break; output_r += (context_length - 1) * input_dim; } } } idx += block_size; } } /** * @brief Context projection forward. * * @param[in] input input sequence. * @param[in] sequence sequence index. * @param[in] weight padding data. * @param[out] output output sequence. * @param[in] num_sequences number of sequences. * @param[in] input_dim input sequence dimension. * @param[in] context_length context length. * @param[in] context_start context start. * @param[in] begin_pad number of extra timesteps added at the * beginning. * */ void hl_context_projection_forward(const real* input, const int* sequence, const real* weight, real* output, size_t num_sequences, size_t input_dim, size_t context_length, int context_start, size_t begin_pad) { CHECK_NOTNULL(input); CHECK_NOTNULL(sequence); CHECK_NOTNULL(output); int block_size = 128; int blocks_x = num_sequences; int blocks_y = 1; dim3 threads(block_size, 1); dim3 grid(blocks_x, blocks_y); if (weight) { KeContextProjectionForward<<< grid, threads, 0, STREAM_DEFAULT >>> (input, sequence, weight, output, input_dim, context_length, context_start, begin_pad); } else { KeContextProjectionForward<<< grid, threads, 0, STREAM_DEFAULT >>> (input, sequence, weight, output, input_dim, context_length, context_start, begin_pad); } CHECK_SYNC("hl_context_projection_forward failed"); } template <> void ContextProjectionForward(GpuMatrix& output, const GpuMatrix& input, const GpuMatrix& weight, const GpuIVector& sequence, size_t context_length, int context_start, size_t begin_pad) { hl_context_projection_forward(input.getData(), sequence.getData(), weight ? weight.getData() : nullptr, output.getData(), sequence.getSize() - 1, input.getWidth(), context_length, context_start, begin_pad); } __global__ void KeContextProjectionBackwardData(const real* out_grad, const int* sequence, real* in_grad, size_t input_dim, int context_length, int context_start) { int idx = threadIdx.x; int block_size = blockDim.x; int sequenceId = blockIdx.x; int seq_start = sequence[sequenceId]; int seq_end = sequence[sequenceId+1]; real value = 0; int instances = seq_end - seq_start + context_length - 1; auto out = const_cast(out_grad); out += seq_start * input_dim * context_length; in_grad += seq_start * input_dim; for (int k = 0; k <= input_dim / block_size; k++) { if (idx < input_dim) { for (int i = 0; i < instances; i++) { if ((i + context_start) < 0) { continue; } else if ((i + context_start) >= (seq_end - seq_start)) { continue; } else { // value = 0; value = in_grad[(i + context_start) * input_dim + idx]; } int outx = (i - context_length) < 0 ? i : (context_length - 1); int outy = (i - context_length) < 0 ? 0 : (i - (context_length - 1)); real* output_r = out + outy * input_dim * context_length + outx * input_dim; for (int j = outy; j < seq_end - seq_start; j++) { value += output_r[idx]; if (j - outy == outx) break; output_r += (context_length - 1) * input_dim; } in_grad[(i + context_start) * input_dim + idx] = value; } } idx += block_size; } } /** * @brief Context projection backward data. * * @param[in] out_grad output gradient. * @param[in] sequence sequence index. * @param[out] input_grad input gradient. * @param[in] num_sequences number of sequences. * @param[in] input_dim input sequence dimension. * @param[in] context_length context length. * @param[in] context_start context start. * */ void hl_context_projection_backward_data(const real* out_grad, const int* sequence, real* input_grad, size_t num_sequences, size_t input_dim, size_t context_length, int context_start) { CHECK_NOTNULL(out_grad); CHECK_NOTNULL(sequence); CHECK_NOTNULL(input_grad); int block_size = 128; int blocks_x = num_sequences; int blocks_y = 1; dim3 threads(block_size, 1); dim3 grid(blocks_x, blocks_y); KeContextProjectionBackwardData<<< grid, threads, 0, STREAM_DEFAULT >>> (out_grad, sequence, input_grad, input_dim, context_length, context_start); CHECK_SYNC("hl_context_projection_backward_data failed"); } template <> <<<<<<< HEAD void ContextProjectionBackwardData(const GpuMatrix& out_grad, GpuMatrix& in_grad, const GpuIVector& sequence, size_t context_length, int context_start) { hl_context_projection_backward_data(out_grad.getData(), sequence.getData(), in_grad.getData(), sequence.getSize() - 1, in_grad.getWidth(), context_length, context_start); } template __global__ void KeContextProjectionBackwardWeight(const real* out_grad, const int* sequence, real* w_grad, int num_sequences, int w_dim, int context_length, int context_start, int begin_pad) { __shared__ real sum_s[THREADS_Y][THREADS_X]; int pad_of_block = (w_dim + THREADS_X - 1) / THREADS_X; const int idx = threadIdx.x; const int idy = threadIdx.y; int padId = blockIdx.x / pad_of_block; int weight_idx = idx + THREADS_X * (blockIdx.x % pad_of_block); int instanceId; real value = 0; real* output_r; sum_s[idy][idx] = 0.0f; if (weight_idx < w_dim) { for (int seqId = idy; seqId < num_sequences; seqId += THREADS_Y) { int seq_start = sequence[seqId]; int seq_end = sequence[seqId+1]; output_r = const_cast(out_grad) + seq_start * w_dim * context_length; if (context_start < 0) { if (padId + context_start < 0) { instanceId = padId; } else { // begin_pad > 0; instanceId = (padId - begin_pad) + (seq_end - seq_start) - context_start; } } else { if (padId + (seq_end - seq_start) < context_start) { continue; } else { // begin_pad == 0; instanceId = padId + (seq_end - seq_start) - context_start; } } int outx = (instanceId - context_length) < 0 ? instanceId : (context_length - 1); int outy = (instanceId - context_length) < 0 ? 0 : (instanceId - (context_length - 1)); output_r += outy * w_dim * context_length + outx * w_dim; for (int j = outy; j < seq_end - seq_start; j++) { value += output_r[weight_idx]; if (j - outy == outx) break; output_r += (context_length - 1) * w_dim; } } sum_s[idy][idx] = value; } __syncthreads(); for (int stride = THREADS_Y/2; stride > 0; stride = stride/2) { if (idy < stride) { sum_s[idy][idx] += sum_s[idy + stride][idx]; } __syncthreads(); } __syncthreads(); if (weight_idx < w_dim) { if (idy == 0) { w_grad[padId * w_dim + weight_idx] += sum_s[0][idx]; } } } /** * @brief Context projection backward weight. * * @param[in] out_grad output gradient. * @param[in] sequence sequence index. * @param[out] w_grad weight gradient. * @param[in] num_sequences number of sequences. * @param[in] w_dim input sequence dimension. * @param[in] total_pad number of extra timesteps. * @param[in] context_length context length. * @param[in] context_start context start. * @param[in] begin_pad number of extra timesteps added at the * beginning. * */ void hl_context_projection_backward_weight(const real* out_grad, const int* sequence, real* w_grad, size_t num_sequences, size_t w_dim, size_t total_pad, size_t context_length, int context_start, size_t begin_pad) { CHECK_NOTNULL(out_grad); CHECK_NOTNULL(sequence); CHECK_NOTNULL(w_grad); int threads_x = 32; int threads_y = 32; int blocks_x = total_pad * ((w_dim + threads_x - 1) / threads_x); dim3 threads(threads_x, threads_y); dim3 grid(blocks_x, 1); KeContextProjectionBackwardWeight<32, 32> <<< grid, threads, 0, STREAM_DEFAULT >>> (out_grad, sequence, w_grad, num_sequences, w_dim, context_length, context_start, begin_pad); CHECK_SYNC("hl_context_projection_backward_weight failed"); } template <> void ContextProjectionBackwardWeight( const GpuMatrix& out_grad, GpuMatrix& w_grad, const GpuIVector& seq_vec, size_t context_length, int context_start, size_t total_pad, size_t begin_pad) { hl_context_projection_backward_weight(out_grad.getData(), seq_vec.getData(), w_grad.getData(), seq_vec.getSize() - 1, w_grad.getWidth(), total_pad, context_length, context_start, begin_pad); } template <> void ContextProjectionBackward(const GpuMatrix& out_grad, GpuMatrix& in_grad, GpuMatrix& w_grad, const GpuIVector& sequence, size_t context_length, int context_start, size_t begin_pad, bool is_padding, size_t total_pad) { if (in_grad) { ContextProjectionBackwardData( out_grad, in_grad, sequence, context_length, context_start); } if (is_padding && w_grad) { ContextProjectionBackwardWeight( out_grad, w_grad, sequence, context_length, context_start, total_pad, begin_pad); } } } // namespace paddle