# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import struct from collections import defaultdict import config import numpy as np import paddle import paddle.fluid.core as core from paddle.fluid.framework import _dygraph_tracer, in_dygraph_mode from paddle.jit.dy2static.utils import parse_arg_and_kwargs def flatten(nest_list): out = [] for i in nest_list: if isinstance(i, (list, tuple)): tmp_list = flatten(i) for j in tmp_list: out.append(j) else: out.append(i) return out def _as_list(x): if x is None: return [] return list(x) if isinstance(x, (list, tuple)) else [x] def convert_uint16_to_float(in_list): in_list = np.asarray(in_list) out = np.vectorize( lambda x: struct.unpack( ' Tensor 2. [Tensor, Tensor, ...] -> list of Tensors 3. None -> None 4. Others: raise Error only support "X" is list of Tensor, currently don't support other structure like dict. """ inp_args = [ [inp] if inp is None else inp for inp in args[:inp_num] ] # convert None -> [None] for inp in inp_args: assert isinstance( inp, list ), "currently only support `X` is [Tensor], don't support other structure." args = [inp[0] if len(inp) == 1 else inp for inp in inp_args] + args[ inp_num: ] return args @classmethod def is_bfloat16_type(cls, np_type): if np_type == np.dtype('uint16'): return True return False def apply_to_static(net, use_cinn): build_strategy = paddle.static.BuildStrategy() build_strategy.build_cinn_pass = use_cinn return paddle.jit.to_static(net, build_strategy=build_strategy) class PrimNet(paddle.nn.Layer): def __init__(self, python_api): super(PrimNet, self).__init__() self.python_api = python_api def forward(self, args): out = self.python_api(*args) return out class PrimForwardChecker: def __init__(self, op_test, place): self.checker_name = "PrimForwardChecker" self.place = place self.op_test = op_test self.save_eager_or_static_status() self.init() self.init_checker() def init(self): pass def save_eager_or_static_status(self): self.eager_mode = True if in_dygraph_mode() else False def recover_eager_or_static_status(self): if self.eager_mode: paddle.disable_static() else: paddle.enable_static() def init_checker(self): assert hasattr( self.op_test, 'prim_op_type' ), "if you want to test comp op, please set prim_op_type with \'prim\' or \'comp\' in setUp function." assert self.op_test.prim_op_type in [ "comp", "prim", ], "prim_op_type must be comp or prim in setUp function." assert hasattr( self.op_test, 'dtype' ), "Please set dtype in setUp function." self.op_type = self.op_test.op_type self.prim_op_type = self.op_test.prim_op_type self.python_api = self.op_test.python_api self.dtype = np.dtype(self.op_test.dtype) self.inputs = self.op_test.inputs self.attrs = ( self.op_test.attrs if hasattr(self.op_test, 'attrs') else {} ) self.outputs = self.op_test.outputs self.init_checker_threshold() self.enable_fw_comp = ( self.op_test.enable_fw_comp if hasattr(self.op_test, 'enable_fw_comp') else True ) self.enable_rev_comp = ( self.op_test.enable_rev_comp if hasattr(self.op_test, 'enable_rev_comp') else True ) self.enable_cinn = ( self.op_test.enable_cinn if hasattr(self.op_test, 'enable_cinn') else True ) if os.getenv('FLAGS_enable_cinn'): self.enable_cinn = True self.enable_check_eager_comp = ( self.op_test.enable_check_eager_comp if hasattr(self.op_test, 'enable_check_eager_comp') else True ) self.enable_check_static_comp = ( self.op_test.enable_check_static_comp if hasattr(self.op_test, 'enable_check_static_comp') else True ) self.enable_check_jit_comp = ( self.op_test.enable_check_jit_comp if hasattr(self.op_test, 'enable_check_jit_comp') else True ) self.enable_check_jit_comp_with_cinn = ( self.op_test.enable_check_jit_comp_with_cinn if hasattr(self.op_test, 'enable_check_jit_comp_with_cinn') else True ) self.kernel_sig = self.get_kernel_sig() def init_checker_threshold(self): if hasattr(self.op_test, 'jit_comp_rtol'): self.jit_comp_rtol = self.op_test.jit_comp_rtol else: self.jit_comp_rtol = ( config.TOLERANCE[self.dtype]['jit_comp']['rtol'] if self.dtype in config.TOLERANCE else 0 ) if hasattr(self.op_test, 'jit_comp_atol'): self.jit_comp_atol = self.op_test.jit_comp_atol else: self.jit_comp_atol = ( config.TOLERANCE[self.dtype]['jit_comp']['atol'] if self.dtype in config.TOLERANCE else 0 ) if hasattr(self.op_test, 'fw_comp_rtol'): self.fw_comp_rtol = self.op_test.fw_comp_rtol else: self.fw_comp_rtol = ( config.TOLERANCE[self.dtype]['fw_comp']['rtol'] if self.dtype in config.TOLERANCE else 0 ) if hasattr(self.op_test, 'fw_comp_atol'): self.fw_comp_atol = self.op_test.fw_comp_atol else: self.fw_comp_atol = ( config.TOLERANCE[self.dtype]['fw_comp']['atol'] if self.dtype in config.TOLERANCE else 0 ) if hasattr(self.op_test, 'rev_comp_rtol'): self.rev_comp_rtol = self.op_test.rev_comp_rtol else: self.rev_comp_rtol = ( config.TOLERANCE[self.dtype]['rev_comp']['rtol'] if self.dtype in config.TOLERANCE else 0 ) if hasattr(self.op_test, 'rev_comp_atol'): self.rev_comp_atol = self.op_test.rev_comp_atol else: self.rev_comp_atol = ( config.TOLERANCE[self.dtype]['rev_comp']['atol'] if self.dtype in config.TOLERANCE else 0 ) if hasattr(self.op_test, 'cinn_rtol'): self.cinn_rtol = self.op_test.cinn_rtol else: self.cinn_rtol = ( config.TOLERANCE[self.dtype]['cinn']['rtol'] if self.dtype in config.TOLERANCE else 0 ) if hasattr(self.op_test, 'cinn_atol'): self.cinn_atol = self.op_test.cinn_atol else: self.cinn_atol = ( config.TOLERANCE[self.dtype]['cinn']['atol'] if self.dtype in config.TOLERANCE else 0 ) def check(self): if ( self.place is paddle.fluid.libpaddle.CUDAPlace and not paddle.is_compiled_with_cuda() ): return self.eager_desire = self.get_eager_desire() if self.enable_check_static_comp: self.check_static_comp() if self.enable_check_jit_comp: self.check_jit_comp() if self.enable_check_jit_comp_with_cinn: self.check_jit_comp_with_cinn() self.recover_eager_or_static_status() def get_kernel_sig(self): paddle.disable_static() if type(self.place) is paddle.fluid.libpaddle.CPUPlace: paddle.device.set_device("cpu") if type(self.place) is paddle.fluid.libpaddle.CUDAPlace: paddle.device.set_device("gpu:0") ( eager_tensor_inputs, attrs_outputs, _, ) = self.get_eager_input_attr_and_inputdict(stop_gradient=True) eager_tensor_outputs = self.get_eager_empty_output(stop_gradient=True) kernel_sig = OpTestUtils._get_kernel_signature( self.op_type, eager_tensor_inputs, eager_tensor_outputs, attrs_outputs, ) return kernel_sig def get_eager_desire(self): paddle.disable_static() if type(self.place) is paddle.fluid.libpaddle.CPUPlace: paddle.device.set_device("cpu") if type(self.place) is paddle.fluid.libpaddle.CUDAPlace: paddle.device.set_device("gpu:0") ( eager_tensor_inputs, attrs_outputs, _, ) = self.get_eager_input_attr_and_inputdict(stop_gradient=True) args = OpTestUtils.prepare_python_api_arguments( self.python_api, eager_tensor_inputs, attrs_outputs, self.kernel_sig ) inputs_sig, _, _ = self.kernel_sig args = OpTestUtils.assumption_assert_and_transform( args, len(inputs_sig) ) ret = flatten(_as_list(self.python_api(*args))) ret = paddle.utils.map_structure(lambda x: x.numpy(), ret) if OpTestUtils.is_bfloat16_type(self.dtype): ret = paddle.utils.map_structure( lambda x: convert_uint16_to_float(x), ret ) return ret def get_eager_input_attr_and_inputdict(self, stop_gradient): attrs_outputs = {} for attrs_name in self.attrs: if self.attrs[attrs_name] is not None: attrs_outputs[attrs_name] = self.attrs[attrs_name] input_dict = {} eager_inputs = defaultdict(list) for name, item in self.inputs.items(): if isinstance(item, list): for tup in item: dtype = ( "bfloat16" if OpTestUtils.is_bfloat16_type(tup[1].dtype) else tup[1].dtype ) x = paddle.to_tensor( data=tup[1], place=self.place, stop_gradient=stop_gradient, dtype=dtype, ) eager_inputs[name].append(x) input_dict.update({str(tup[0]): x}) else: dtype = ( "bfloat16" if OpTestUtils.is_bfloat16_type(item.dtype) else item.dtype ) x = paddle.to_tensor( data=item, place=self.place, stop_gradient=stop_gradient, dtype=dtype, ) eager_inputs[name].append(x) input_dict.update({name: x}) return eager_inputs, attrs_outputs, input_dict def get_eager_empty_output(self, stop_gradient): eager_outputs = defaultdict(list) for name, item in self.outputs.items(): if isinstance(item, list): for tup in item: dtype = ( "bfloat16" if OpTestUtils.is_bfloat16_type(tup[1].dtype) else tup[1].dtype ) x = paddle.to_tensor( data=[], place=self.place, stop_gradient=stop_gradient, dtype=dtype, ) eager_outputs[name].append(x) else: dtype = ( "bfloat16" if OpTestUtils.is_bfloat16_type(item.dtype) else item.dtype ) x = paddle.to_tensor( data=[], place=self.place, stop_gradient=stop_gradient, dtype=dtype, ) eager_outputs[name].append(x) return eager_outputs def get_static_input_attr_inputdict_and_feed(self, stop_gradient): attrs_outputs = {} for attrs_name in self.attrs: if self.attrs[attrs_name] is not None: attrs_outputs[attrs_name] = self.attrs[attrs_name] input_dict = {} static_inputs = defaultdict(list) feed = {} for name, item in self.inputs.items(): if isinstance(item, list): for tup in item: dtype = ( "bfloat16" if OpTestUtils.is_bfloat16_type(tup[1].dtype) else tup[1].dtype ) x = paddle.static.data( name=str(tup[0]), shape=tup[1].shape, dtype=dtype ) x.stop_gradient = stop_gradient static_inputs[name].append(x) feed.update({str(tup[0]): tup[1]}) input_dict.update({str(tup[0]): x}) else: dtype = ( "bfloat16" if OpTestUtils.is_bfloat16_type(item.dtype) else item.dtype ) x = paddle.static.data(name=name, shape=item.shape, dtype=dtype) x.stop_gradient = stop_gradient static_inputs[name].append(x) feed.update({name: item}) input_dict.update({name: x}) return static_inputs, attrs_outputs, input_dict, feed def check_eager_comp(self): pass def check_static_comp(self): # forward comp only for comp op if self.prim_op_type == "prim": return paddle.enable_static() core._set_prim_forward_enabled(self.enable_fw_comp) startup_program, main_program = ( paddle.static.Program(), paddle.static.Program(), ) with paddle.static.program_guard(main_program, startup_program): ( static_inputs, attrs, input_dict, feed, ) = self.get_static_input_attr_inputdict_and_feed( stop_gradient=True ) args = OpTestUtils.prepare_python_api_arguments( self.python_api, static_inputs, attrs, self.kernel_sig ) inputs_sig, _, _ = self.kernel_sig args = OpTestUtils.assumption_assert_and_transform( args, len(inputs_sig) ) ret = flatten(_as_list(self.python_api(*args))) paddle.incubate.autograd.to_prim(main_program.blocks) exe = paddle.static.Executor(self.place) exe.run(startup_program) ret = exe.run(main_program, feed=feed, fetch_list=ret) if OpTestUtils.is_bfloat16_type(self.dtype): ret = paddle.utils.map_structure( lambda x: convert_uint16_to_float(x), ret ) # check static forward if len(ret) != len(self.eager_desire): msg = ( "The static comp forward api out tensor nums is different with eager forward api out tensor nums on %s." 'when enable_fw_comp is %s, static comp forward api out tensor nums = %s, eager forward api out tensor nums = %s. \n' % ( str(self.place), self.enable_fw_comp, len(ret), len(self.eager_desire), ) ) raise RuntimeError(msg) for i in range(len(ret)): if not np.allclose( ret[i], self.eager_desire[i], rtol=self.fw_comp_rtol, atol=self.fw_comp_atol, ): msg = ( 'Check static comp forward api out failed. Mismatch between static comp ' 'and eager on %s, when enable_fw_comp is %s,the forward api out tensor\'s index is : %d \n' 'static comp forward api out tensor:\n%s\n eager forward api out tensor:\n%s\n' % ( str(self.place), self.enable_fw_comp, i, ret[i], self.eager_desire[i], ) ) raise RuntimeError(msg) paddle.disable_static() core._set_prim_forward_enabled(False) def check_jit_comp(self): if self.prim_op_type == "prim": return paddle.disable_static() if type(self.place) == paddle.fluid.libpaddle.CPUPlace: paddle.device.set_device("cpu") if type(self.place) == paddle.fluid.libpaddle.CUDAPlace: paddle.device.set_device("gpu:0") atol = self.fw_comp_atol if self.enable_fw_comp else self.jit_comp_atol rtol = self.fw_comp_rtol if self.enable_fw_comp else self.jit_comp_rtol core._set_prim_forward_enabled(self.enable_fw_comp) ( eager_tensor_inputs, attrs_outputs, _, ) = self.get_eager_input_attr_and_inputdict(stop_gradient=True) args = OpTestUtils.prepare_python_api_arguments( self.python_api, eager_tensor_inputs, attrs_outputs, self.kernel_sig ) inputs_sig, _, _ = self.kernel_sig args = OpTestUtils.assumption_assert_and_transform( args, len(inputs_sig) ) net = PrimNet(self.python_api) net = apply_to_static(net, False) ret = flatten(_as_list(net(args))) ret = paddle.utils.map_structure(lambda x: x.numpy(), ret) if OpTestUtils.is_bfloat16_type(self.dtype): ret = paddle.utils.map_structure( lambda x: convert_uint16_to_float(x), ret ) # check jit comp forward if len(ret) != len(self.eager_desire): msg = ( "The jit comp forward api out tensor nums is different with eager forward api out tensor nums on %s." 'when enable_fw_comp is %s, jit comp forward api out tensor nums = %s, eager forward api out tensor nums = %s. \n' % ( str(self.place), self.enable_fw_comp, len(ret), len(self.eager_desire), ) ) raise RuntimeError(msg) for i in range(len(ret)): if not np.allclose( ret[i], self.eager_desire[i], rtol=rtol, atol=atol ): msg = ( 'Check jit comp forward api out failed. Mismatch between jit comp ' 'and eager on %s, when enable_fw_comp is %s,the forward api out tensor\'s index is : %d \n' 'jit comp forward api out tensor:\n%s\n eager forward api out tensor:\n%s\n' % ( str(self.place), self.enable_fw_comp, i, ret[i], self.eager_desire[i], ) ) raise RuntimeError(msg) core._set_prim_forward_enabled(False) net.forward.program_cache.clear() def check_jit_comp_with_cinn(self): if self.prim_op_type == "prim": return # cinn doesn't suppoort cpu place if ( type(self.place) == paddle.fluid.libpaddle.CPUPlace and self.enable_cinn and core.is_compiled_with_cinn() ): return paddle.disable_static() atol = ( self.cinn_atol if self.enable_cinn and core.is_compiled_with_cinn() else self.fw_comp_atol ) rtol = ( self.cinn_rtol if self.enable_cinn and core.is_compiled_with_cinn() else self.fw_comp_rtol ) core._set_prim_forward_enabled(self.enable_fw_comp) if type(self.place) is paddle.fluid.libpaddle.CPUPlace: paddle.device.set_device("cpu") if type(self.place) is paddle.fluid.libpaddle.CUDAPlace: paddle.device.set_device("gpu:0") ( eager_tensor_inputs, attrs_outputs, _, ) = self.get_eager_input_attr_and_inputdict(stop_gradient=True) args = OpTestUtils.prepare_python_api_arguments( self.python_api, eager_tensor_inputs, attrs_outputs, self.kernel_sig ) inputs_sig, _, _ = self.kernel_sig args = OpTestUtils.assumption_assert_and_transform( args, len(inputs_sig) ) net = PrimNet(self.python_api) net = apply_to_static( net, core.is_compiled_with_cinn() and self.enable_cinn ) ret = flatten(_as_list(net(args))) ret = paddle.utils.map_structure(lambda x: x.numpy(), ret) if OpTestUtils.is_bfloat16_type(self.dtype): ret = paddle.utils.map_structure( lambda x: convert_uint16_to_float(x), ret ) # check jit comp forward if len(ret) != len(self.eager_desire): msg = ( "The jit comp with cinn forward api out tensor nums is different with eager forward api out tensor nums on %s." 'when enable_fw_comp is %s, enable_cinn is %s, jit comp forward api out tensor nums = %s, eager forward api out tensor nums = %s. \n' % ( str(self.place), self.enable_fw_comp, core.is_compiled_with_cinn() and self.enable_cinn, len(ret), len(self.eager_desire), ) ) raise RuntimeError(msg) for i in range(len(ret)): if not np.allclose( ret[i], self.eager_desire[i], rtol=rtol, atol=atol ): msg = ( 'Check jit comp with cinn forward api out failed. Mismatch between jit comp and eager on %s, ' 'when enable_fw_comp is %s, enable_cinn is %s, the forward api out tensor\'s index is : %d \n' 'jit comp forward api out tensor:\n%s\n eager forward api out tensor:\n%s\n' % ( str(self.place), self.enable_fw_comp, core.is_compiled_with_cinn() and self.enable_cinn, i, ret[i], self.eager_desire[i], ) ) raise RuntimeError(msg) core._set_prim_forward_enabled(False) net.forward.program_cache.clear() class PrimGradChecker(PrimForwardChecker): def __init__( self, op_test, place, inputs_to_check, output_names, no_grad_set, grad_outputs, ): PrimForwardChecker.__init__(self, op_test, place) self.inputs_to_check = inputs_to_check self.output_names = output_names self.no_grad_set = no_grad_set self.grad_outputs = grad_outputs def init(self): self.checker_name = "PrimGradChecker" def check(self): if ( self.place is paddle.fluid.libpaddle.CUDAPlace and not paddle.is_compiled_with_cuda() ): return self.eager_desire = self.get_eager_desire() if self.enable_check_eager_comp: self.check_eager_comp() if self.enable_check_static_comp: self.check_static_comp() if self.enable_check_jit_comp: self.check_jit_comp() if self.enable_check_jit_comp_with_cinn: self.check_jit_comp_with_cinn() self.recover_eager_or_static_status() def get_output_dict(self, np_outputs, api_outputs, outputs_sig): assert len(api_outputs) <= len(outputs_sig), ( "forward api outputs length must be the less than or equal to KernelSignature outputs,but recive %s and %s" ) % (len(api_outputs), len(outputs_sig)) output_dict = {} for i in range(len(api_outputs)): output_name = outputs_sig[i] if output_name in np_outputs and isinstance( np_outputs[output_name], list ): for j, tup in enumerate(np_outputs[output_name]): output_dict.update({tup[0]: api_outputs[i][j]}) else: output_dict.update({output_name: api_outputs[i]}) return output_dict def gen_eager_grad_outputs(self): if self.grad_outputs is None: return None eager_vs = [] for np_v in self.grad_outputs: eager_vs.append( paddle.to_tensor( data=np_v, place=self.place, dtype="bfloat16" if OpTestUtils.is_bfloat16_type(np_v.dtype) else np_v.dtype, ) ) return eager_vs def gen_static_grad_outputs_and_feed(self): if self.grad_outputs is None: return None, {} static_vs = [] feed = {} for i, np_v in enumerate(self.grad_outputs): static_vs.append( paddle.static.data( name='v_' + str(i), shape=np_v.shape, dtype="bfloat16" if OpTestUtils.is_bfloat16_type(np_v.dtype) else np_v.dtype, ) ) feed.update({'v_' + str(i): np_v}) return static_vs, feed def gen_no_grad_set(self, var_dict): if self.no_grad_set is None: return None no_grad_set = set() for name in self.no_grad_set: if name in var_dict: no_grad_set.add(var_dict[name]) return no_grad_set def get_eager_desire(self): paddle.disable_static() if type(self.place) is paddle.fluid.libpaddle.CPUPlace: paddle.device.set_device("cpu") if type(self.place) is paddle.fluid.libpaddle.CUDAPlace: paddle.device.set_device("gpu:0") ( eager_tensor_inputs, attrs_outputs, inputs_dict, ) = self.get_eager_input_attr_and_inputdict(stop_gradient=False) args = OpTestUtils.prepare_python_api_arguments( self.python_api, eager_tensor_inputs, attrs_outputs, self.kernel_sig ) inputs_sig, _, outputs_sig = self.kernel_sig if hasattr(self.op_test, "python_out_sig"): outputs_sig = self.op_test.python_out_sig args = OpTestUtils.assumption_assert_and_transform( args, len(inputs_sig) ) ret = _as_list(self.python_api(*args)) outputs_dict = self.get_output_dict(self.outputs, ret, outputs_sig) ys = [] if isinstance(self.output_names, list): for output_name in self.output_names: ys.append(outputs_dict[output_name]) else: ys.append(outputs_dict[self.output_names]) xs = [] if isinstance(self.inputs_to_check, list): for input_name in self.inputs_to_check: xs.append(inputs_dict[input_name]) else: xs.append(inputs_dict[self.inputs_to_check]) vs = self.gen_eager_grad_outputs() no_grad_vars = self.gen_no_grad_set( var_dict={**inputs_dict, **outputs_dict} ) ret = paddle.grad( ys, xs, vs, allow_unused=True, no_grad_vars=no_grad_vars ) ret = paddle.utils.map_structure(lambda x: x.numpy(), ret) if OpTestUtils.is_bfloat16_type(self.dtype): ret = paddle.utils.map_structure( lambda x: convert_uint16_to_float(x), ret ) return ret def check_eager_comp(self): if self.prim_op_type == "comp": return paddle.disable_static() if type(self.place) is paddle.fluid.libpaddle.CPUPlace: paddle.device.set_device("cpu") if type(self.place) is paddle.fluid.libpaddle.CUDAPlace: paddle.device.set_device("gpu:0") atol = self.rev_comp_atol rtol = self.rev_comp_rtol core.set_prim_eager_enabled(self.enable_rev_comp) actual_ret = self.get_eager_desire() # check static forward if len(actual_ret) != len(self.eager_desire): msg = ( "The eager comp grad out tensor nums is different with eager grad out tensor nums on %s." 'when enable_rev_comp is %s, eager comp grad api out tensor nums = %s, eager grad out tensor nums = %s. \n' % ( str(self.place), self.enable_rev_comp, len(actual_ret), len(self.eager_desire), ) ) raise RuntimeError(msg) for i in range(len(actual_ret)): if not np.allclose( actual_ret[i], self.eager_desire[i], rtol=atol, atol=rtol, ): msg = ( 'Check eager comp grad out failed. Mismatch between eager comp ' 'and eager on %s, when enable_rev_comp is %s,the eager comp grad out tensor\'s index is : %d \n' 'eager comp grad out tensor:\n%s\n eager grad out tensor:\n%s\n' % ( str(self.place), self.enable_rev_comp, i, actual_ret[i], self.eager_desire[i], ) ) raise RuntimeError(msg) core.set_prim_eager_enabled(False) def check_static_comp(self): paddle.enable_static() if self.prim_op_type == "prim": core._set_prim_backward_enabled(self.enable_rev_comp) else: core._set_prim_forward_enabled(self.enable_fw_comp) core._set_prim_backward_enabled(self.enable_rev_comp) atol = self.rev_comp_atol if self.enable_rev_comp else self.fw_comp_atol rtol = self.rev_comp_rtol if self.enable_rev_comp else self.fw_comp_rtol startup_program, main_program = ( paddle.static.Program(), paddle.static.Program(), ) with paddle.static.program_guard(main_program, startup_program): ( static_inputs, attrs, inputs_dict, feed, ) = self.get_static_input_attr_inputdict_and_feed( stop_gradient=False ) args = OpTestUtils.prepare_python_api_arguments( self.python_api, static_inputs, attrs, self.kernel_sig ) inputs_sig, _, outputs_sig = self.kernel_sig if hasattr(self.op_test, "python_out_sig"): outputs_sig = self.op_test.python_out_sig args = OpTestUtils.assumption_assert_and_transform( args, len(inputs_sig) ) fw_outs = _as_list(self.python_api(*args)) outputs_dict = self.get_output_dict( self.outputs, fw_outs, outputs_sig ) paddle.incubate.autograd.to_prim(main_program.blocks) ys = [] if isinstance(self.output_names, list): for output_name in self.output_names: ys.append(outputs_dict[output_name]) else: ys.append(outputs_dict[self.output_names]) xs = [] if isinstance(self.inputs_to_check, list): for input_name in self.inputs_to_check: xs.append(inputs_dict[input_name]) else: xs.append(inputs_dict[self.inputs_to_check]) vs, vs_feed = self.gen_static_grad_outputs_and_feed() feed.update(vs_feed) no_grad_vars = self.gen_no_grad_set( var_dict={**inputs_dict, **outputs_dict} ) ret = paddle.static.gradients(ys, xs, vs, no_grad_set=no_grad_vars) exe = paddle.static.Executor(self.place) exe.run(startup_program) actual_ret = exe.run(main_program, feed=feed, fetch_list=ret) if OpTestUtils.is_bfloat16_type(self.dtype): actual_ret = paddle.utils.map_structure( lambda x: convert_uint16_to_float(x), actual_ret ) # check static grad out if len(actual_ret) != len(self.eager_desire): msg = ( "The static comp grad out tensor nums is different with eager grad out tensor nums on %s." 'when enable_fw_comp is %s,enable_rev_comp is %s, static comp grad out tensor nums = %s, eager grad out tensor nums = %s. \n' % ( str(self.place), self.enable_fw_comp, self.enable_rev_comp, len(actual_ret), len(self.eager_desire), ) ) raise RuntimeError(msg) for i in range(len(actual_ret)): if not np.allclose( actual_ret[i], self.eager_desire[i], rtol=rtol, atol=atol ): msg = ( 'Check static comp grad out failed. Mismatch between static comp ' 'and eager on %s, when enable_fw_comp is %s,enable_rev_comp is %s,the forward api out tensor\'s index is : %d \n' 'static comp grad out tensor:\n%s\n eager grad out tensor:\n%s\n' % ( str(self.place), self.enable_fw_comp, self.enable_rev_comp, i, actual_ret[i], self.eager_desire[i], ) ) raise RuntimeError(msg) core._set_prim_forward_enabled(False) core._set_prim_backward_enabled(False) paddle.disable_static() def check_jit_comp(self): paddle.disable_static() if type(self.place) is paddle.fluid.libpaddle.CPUPlace: paddle.device.set_device("cpu") if type(self.place) is paddle.fluid.libpaddle.CUDAPlace: paddle.device.set_device("gpu:0") if self.prim_op_type == "prim": core._set_prim_backward_enabled(self.enable_rev_comp) else: core._set_prim_forward_enabled(self.enable_fw_comp) core._set_prim_backward_enabled(self.enable_rev_comp) atol = ( self.fw_comp_atol if self.enable_fw_comp and not self.enable_rev_comp else self.jit_comp_atol ) rtol = ( self.fw_comp_rtol if self.enable_fw_comp and not self.enable_rev_comp else self.jit_comp_rtol ) atol = self.rev_comp_atol if self.enable_rev_comp else atol rtol = self.rev_comp_rtol if self.enable_rev_comp else rtol ( eager_tensor_inputs, attrs_outputs, inputs_dict, ) = self.get_eager_input_attr_and_inputdict(stop_gradient=False) args = OpTestUtils.prepare_python_api_arguments( self.python_api, eager_tensor_inputs, attrs_outputs, self.kernel_sig ) inputs_sig, _, outputs_sig = self.kernel_sig args = OpTestUtils.assumption_assert_and_transform( args, len(inputs_sig) ) net = PrimNet(self.python_api) net = apply_to_static(net, False) out = _as_list(net(args)) if hasattr(self.op_test, "python_out_sig"): outputs_sig = self.op_test.python_out_sig outputs_dict = self.get_output_dict(self.outputs, out, outputs_sig) ys = [] if isinstance(self.output_names, list): for output_name in self.output_names: ys.append(outputs_dict[output_name]) else: ys.append(outputs_dict[self.output_names]) xs = [] if isinstance(self.inputs_to_check, list): for input_name in self.inputs_to_check: xs.append(inputs_dict[input_name]) else: xs.append(inputs_dict[self.inputs_to_check]) vs = self.gen_eager_grad_outputs() no_grad_vars = self.gen_no_grad_set( var_dict={**inputs_dict, **outputs_dict} ) ret = paddle.grad( ys, xs, vs, allow_unused=True, no_grad_vars=no_grad_vars ) ret = paddle.utils.map_structure(lambda x: x.numpy(), ret) if OpTestUtils.is_bfloat16_type(self.dtype): ret = paddle.utils.map_structure( lambda x: convert_uint16_to_float(x), ret ) # check jit comp grad out if len(ret) != len(self.eager_desire): msg = ( "The jit comp grad out tensor nums is different with eager grad out tensor nums on %s." 'when enable_fw_comp is %s, enable_rev_comp is %s, jit comp grad out tensor nums = %s, eager grad out tensor nums = %s. \n' % ( str(self.place), self.enable_fw_comp, self.enable_rev_comp, len(ret), len(self.eager_desire), ) ) raise RuntimeError(msg) for i in range(len(ret)): if not np.allclose( ret[i], self.eager_desire[i], rtol=rtol, atol=atol ): msg = ( 'Check jit comp grad out failed. Mismatch between jit comp ' 'and eager on %s, when enable_fw_comp is %s, enable_rev_comp is %s,the grad out tensor\'s index is : %d \n' 'jit comp grad out tensor:\n%s\n eager grad out out tensor:\n%s\n' % ( str(self.place), self.enable_fw_comp, self.enable_rev_comp, i, ret[i], self.eager_desire[i], ) ) raise RuntimeError(msg) core._set_prim_forward_enabled(False) core._set_prim_backward_enabled(False) net.forward.program_cache.clear() def check_jit_comp_with_cinn(self): # cinn doesen't support cpu place if ( type(self.place) is paddle.fluid.libpaddle.CPUPlace and self.enable_cinn and core.is_compiled_with_cinn() ): return paddle.disable_static() if type(self.place) is paddle.fluid.libpaddle.CPUPlace: paddle.device.set_device("cpu") if type(self.place) is paddle.fluid.libpaddle.CUDAPlace: paddle.device.set_device("gpu:0") if self.prim_op_type == "prim": core._set_prim_backward_enabled(self.enable_rev_comp) else: core._set_prim_forward_enabled(self.enable_fw_comp) core._set_prim_backward_enabled(self.enable_rev_comp) if self.enable_cinn and core.is_compiled_with_cinn(): atol = self.cinn_atol rtol = self.cinn_rtol else: atol = ( self.fw_comp_atol if self.enable_fw_comp and not self.enable_rev_comp else self.jit_comp_atol ) rtol = ( self.fw_comp_rtol if self.enable_fw_comp and not self.enable_rev_comp else self.jit_comp_rtol ) atol = self.rev_comp_atol if self.enable_rev_comp else atol rtol = self.rev_comp_rtol if self.enable_rev_comp else rtol ( eager_tensor_inputs, attrs_outputs, inputs_dict, ) = self.get_eager_input_attr_and_inputdict(stop_gradient=False) args = OpTestUtils.prepare_python_api_arguments( self.python_api, eager_tensor_inputs, attrs_outputs, self.kernel_sig ) inputs_sig, _, outputs_sig = self.kernel_sig args = OpTestUtils.assumption_assert_and_transform( args, len(inputs_sig) ) net = PrimNet(self.python_api) net = apply_to_static( net, core.is_compiled_with_cinn() and self.enable_cinn ) out = _as_list(net(args)) if hasattr(self.op_test, "python_out_sig"): outputs_sig = self.op_test.python_out_sig outputs_dict = self.get_output_dict(self.outputs, out, outputs_sig) ys = [] if isinstance(self.output_names, list): for output_name in self.output_names: ys.append(outputs_dict[output_name]) else: ys.append(outputs_dict[self.output_names]) xs = [] if isinstance(self.inputs_to_check, list): for input_name in self.inputs_to_check: xs.append(inputs_dict[input_name]) else: xs.append(inputs_dict[self.inputs_to_check]) vs = self.gen_eager_grad_outputs() no_grad_vars = self.gen_no_grad_set( var_dict={**inputs_dict, **outputs_dict} ) ret = paddle.grad( ys, xs, vs, allow_unused=True, no_grad_vars=no_grad_vars ) ret = paddle.utils.map_structure(lambda x: x.numpy(), ret) if OpTestUtils.is_bfloat16_type(self.dtype): ret = paddle.utils.map_structure( lambda x: convert_uint16_to_float(x), ret ) # check jit comp grad out if len(ret) != len(self.eager_desire): msg = ( "The jit comp with cinn grad out tensor nums is different with eager grad out tensor nums on %s." 'when enable_fw_comp is %s, enable_rev_comp is %s, enable_cinn is %s, jit comp grad out tensor nums = %s, eager grad out tensor nums = %s. \n' % ( str(self.place), self.enable_fw_comp, self.enable_rev_comp, self.enable_cinn and core.is_compiled_with_cinn(), len(ret), len(self.eager_desire), ) ) raise RuntimeError(msg) for i in range(len(ret)): if not np.allclose( ret[i], self.eager_desire[i], rtol=rtol, atol=atol ): msg = ( 'Check jit comp with cinn grad out failed. Mismatch between jit comp with cinn ' 'and eager on %s, when enable_fw_comp is %s, enable_rev_comp is %s, enable_cinn is %s,' 'the grad out tensor\'s index is : %d ,jit comp with cinn grad out tensor:\n%s\n eager grad out out tensor:\n%s\n' % ( str(self.place), self.enable_fw_comp, self.enable_rev_comp, self.enable_cinn and core.is_compiled_with_cinn(), i, ret[i], self.eager_desire[i], ) ) raise RuntimeError(msg) core._set_prim_forward_enabled(False) core._set_prim_backward_enabled(False) net.forward.program_cache.clear()