// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/framework/ir/mkldnn/cpu_quantize_pass.h" #include #include #include #include #include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/platform/errors.h" #include "paddle/fluid/string/pretty_log.h" namespace paddle { namespace framework { namespace ir { using EigenVectorArrayMap = Eigen::Map>; using string::PrettyLogDetail; namespace { void UnlinkNodes(ir::Node* a, ir::Node* b) { a->outputs.erase(std::remove(a->outputs.begin(), a->outputs.end(), b), a->outputs.end()); b->inputs.erase(std::remove(b->inputs.begin(), b->inputs.end(), a), b->inputs.end()); } void LogCannotQuantizeOp(Node* op, const char* details = nullptr) { std::stringstream msg_ss; msg_ss << "Cannot quantize operator " << op->Name() << " (type: " << op->Op()->Type() << ", id: " << op->id() << ")."; if (details) msg_ss << " " << details; PrettyLogDetail(msg_ss.str().c_str()); } void LogScaleIsMissingForVar(Node* var) { std::stringstream msg_ss; msg_ss << "Quantization scale for the variable " << var->Name() << " is missing."; PrettyLogDetail(msg_ss.str().c_str()); } void LogQuantizationDisabled(Node* op) { std::stringstream msg_ss; VLOG(4) << "Qantization skipped for operator " << op->Name() << " (type: " << op->Op()->Type() << ", id: " << op->id() << "). Attribute use_quantizer = false."; } } // namespace enum { U8_MAX = 255, S8_MAX = 127 }; void CPUQuantizePass::QuantizeInput(Graph* g, Node* op, Node* input, std::string input_name, double scale_to_one, bool is_unsigned, std::string scale_attr_name) const { auto inputs = op->Op()->InputNames(); bool name_found = std::find(inputs.begin(), inputs.end(), input_name) != inputs.end(); PADDLE_ENFORCE_EQ( name_found, true, platform::errors::InvalidArgument("%s isn't the input of the %s operator", input_name, op->Op()->Type())); unsigned max = is_unsigned ? U8_MAX : S8_MAX; float scale = scale_to_one * max; // Create quantize output variable VarDesc quantize_out_desc(patterns::PDNodeName("quantize", "out")); auto* quantize_out_node = g->CreateVarNode(&quantize_out_desc); // create a quantize op node OpDesc q_desc; q_desc.SetType("quantize"); q_desc.SetInput("Input", std::vector({input->Name()})); q_desc.SetOutput("Output", std::vector({quantize_out_node->Name()})); q_desc.SetAttr("Scale", scale); q_desc.SetAttr("is_negative_input", !is_unsigned); q_desc.SetAttr("output_format", Has("data_layout") ? Get("data_layout") : "NHWC"); auto quantize_op = g->CreateOpNode(&q_desc); // OpDesc will be copied. // update op's input op->Op()->SetInput(input_name, std::vector({quantize_out_node->Name()})); // link quantize op UnlinkNodes(input, op); IR_NODE_LINK_TO(input, quantize_op); IR_NODE_LINK_TO(quantize_op, quantize_out_node); IR_NODE_LINK_TO(quantize_out_node, op); if (!scale_attr_name.empty()) op->Op()->SetAttr(scale_attr_name, scale); } void CPUQuantizePass::QuantizeInputs(Graph* g, Node* op, std::string input_name, bool are_unsigned, std::string scale_attr_name) const { auto inputs = op->inputs; auto output = op->outputs[0]; PADDLE_ENFORCE_GE(inputs.size(), 1); PADDLE_ENFORCE_EQ(op->outputs.size(), 1); // create a quantize op desc prototype OpDesc q_desc; q_desc.SetType("quantize"); std::vector quantize_out_nodes(inputs.size()); std::vector quantize_out_node_names(inputs.size()); double scale_out = GetScaleValueForNode(output); unsigned max = are_unsigned ? U8_MAX : S8_MAX; float scale = scale_out * max; for (size_t i = 0; i < inputs.size(); i++) { // Create quantize output variable VarDesc quantize_out_desc(patterns::PDNodeName("quantize", "out")); quantize_out_nodes[i] = g->CreateVarNode(&quantize_out_desc); quantize_out_node_names[i] = quantize_out_nodes[i]->Name(); q_desc.SetAttr("Scale", scale); q_desc.SetInput("Input", std::vector({inputs[i]->Name()})); q_desc.SetOutput("Output", std::vector({quantize_out_node_names[i]})); q_desc.SetAttr("is_negative_input", !are_unsigned); auto quantize_op = g->CreateOpNode(&q_desc); // OpDesc will be copied. // link quantize op UnlinkNodes(inputs[i], op); IR_NODE_LINK_TO(inputs[i], quantize_op); IR_NODE_LINK_TO(quantize_op, quantize_out_nodes[i]); IR_NODE_LINK_TO(quantize_out_nodes[i], op); } // update op's input op->Op()->SetInput(input_name, quantize_out_node_names); if (!scale_attr_name.empty()) op->Op()->SetAttr(scale_attr_name, scale); } void CPUQuantizePass::DequantizeOutput(Graph* g, Node* op, Node* output, std::string output_name, double scale_to_one, bool is_unsigned, std::string scale_attr_name) const { auto outputs = op->Op()->OutputNames(); bool name_found = std::find(outputs.begin(), outputs.end(), output_name) != outputs.end(); PADDLE_ENFORCE_EQ(name_found, true, platform::errors::InvalidArgument( "%s isn't the output of the %s operator", output_name, op->Op()->Type())); unsigned max = is_unsigned ? U8_MAX : S8_MAX; float scale = scale_to_one * max; // Create dequantize input variable VarDesc dequantize_in_desc(patterns::PDNodeName("dequantize", "in")); auto* dequantize_in_node = g->CreateVarNode(&dequantize_in_desc); // create a dequantize op node for output. OpDesc deq_desc; deq_desc.SetType("dequantize"); deq_desc.SetInput("Input", std::vector({dequantize_in_node->Name()})); deq_desc.SetOutput("Output", std::vector({output->Name()})); deq_desc.SetAttr("Scale", scale); auto dequantize_op = g->CreateOpNode(&deq_desc); // OpDesc will be copied. // update op's output op->Op()->SetOutput(output_name, std::vector({dequantize_in_node->Name()})); // link dequantize op UnlinkNodes(op, output); IR_NODE_LINK_TO(op, dequantize_in_node); IR_NODE_LINK_TO(dequantize_in_node, dequantize_op); IR_NODE_LINK_TO(dequantize_op, output); if (!scale_attr_name.empty()) op->Op()->SetAttr(scale_attr_name, scale); } bool CPUQuantizePass::AreScalesPresentForNodes( const Node* op_node, std::initializer_list nodes) const { auto& scales = Get("quant_var_scales"); bool present = true; for (auto node : nodes) { if (scales.count(node->Name()) == 0) { present = false; LogScaleIsMissingForVar(node); } } return present; } std::pair CPUQuantizePass::GetScaleDataForNode( const Node* node) const { auto& scales = Get("quant_var_scales"); return scales[node->Name()]; } LoDTensor CPUQuantizePass::GetScaleTensorForNode(const Node* node) const { return GetScaleDataForNode(node).second; } double CPUQuantizePass::GetScaleValueForNode(const Node* node, bool* is_unsigned) const { auto scale_data = GetScaleDataForNode(node); if (is_unsigned != nullptr) *is_unsigned = scale_data.first; return scale_data.second.data()[0]; } bool CPUQuantizePass::IsOpDequantized(const Node* node) const { return node->Op()->Type() == "dequantize" || node->Op()->GetAttrIfExists("use_quantizer"); } bool CPUQuantizePass::IsOpQuantized(const Node* node) const { return node->Op()->Type() == "quantize" || node->Op()->GetAttrIfExists("use_quantizer"); } void CPUQuantizePass::QuantizeConv(Graph* graph, bool with_residual_data) const { GraphPatternDetector gpd; auto pattern = gpd.mutable_pattern(); patterns::ConvResidual conv_pattern{pattern, name_scope_}; conv_pattern(with_residual_data); int quantize_conv_count = 0; auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph, Graph* g) { VLOG(4) << "Quantize conv2d op"; GET_IR_NODE_FROM_SUBGRAPH(conv_op, conv_op, conv_pattern); auto* conv_op_desc = conv_op->Op(); // skip if should not be quantized if (!conv_op_desc->GetAttrIfExists("use_quantizer")) { LogQuantizationDisabled(conv_op); return; } GET_IR_NODE_FROM_SUBGRAPH(conv_filter, conv_filter, conv_pattern); GET_IR_NODE_FROM_SUBGRAPH(conv_input, conv_input, conv_pattern); GET_IR_NODE_FROM_SUBGRAPH(conv_output, conv_output, conv_pattern); if (with_residual_data) { GET_IR_NODE_FROM_SUBGRAPH(conv_residual_data, conv_residual_data, conv_pattern); if (!AreScalesPresentForNodes( conv_op, {conv_input, conv_filter, conv_residual_data})) { LogCannotQuantizeOp(conv_op); return; } bool is_residual_unsigned{false}; auto residual_scale = GetScaleValueForNode(conv_residual_data, &is_residual_unsigned); QuantizeInput(g, conv_op, conv_residual_data, "ResidualData", residual_scale, is_residual_unsigned, "Scale_in_eltwise"); } else { if (!AreScalesPresentForNodes(conv_op, {conv_input, conv_filter})) { LogCannotQuantizeOp(conv_op); return; } } bool is_input_unsigned{false}; auto input_scale = GetScaleValueForNode(conv_input, &is_input_unsigned); QuantizeInput(g, conv_op, conv_input, "Input", input_scale, is_input_unsigned, "Scale_in"); auto filter_scale_tensor = GetScaleTensorForNode(conv_filter); EigenVectorArrayMap eigen_tensor{filter_scale_tensor.data(), filter_scale_tensor.numel(), 1}; eigen_tensor *= static_cast(S8_MAX); std::vector filter_scale{ filter_scale_tensor.data(), filter_scale_tensor.data() + filter_scale_tensor.numel()}; conv_op->Op()->SetAttr("Scale_weights", filter_scale); // if quantization scale is missing for output tensor, return fp32 data if (AreScalesPresentForNodes(conv_op, {conv_output})) { bool is_output_unsigned{false}; auto output_scale = GetScaleValueForNode(conv_output, &is_output_unsigned); DequantizeOutput(g, conv_op, conv_output, "Output", output_scale, is_output_unsigned, "Scale_out"); } else { conv_op->Op()->SetAttr("force_fp32_output", true); } // change threshold in bounded ReLu if (conv_op->Op()->GetAttrIfExists("fuse_activation") == "relu6") { float scale_out = BOOST_GET_CONST(float, conv_op->Op()->GetAttr("Scale_out")); float threshold = BOOST_GET_CONST(float, conv_op->Op()->GetAttr("fuse_alpha")); conv_op->Op()->SetAttr("fuse_alpha", scale_out * threshold); } ++quantize_conv_count; }; gpd(graph, handler); AddStatis(quantize_conv_count); std::stringstream msg_ss; msg_ss << "--- quantized " << quantize_conv_count << " conv2d ops"; if (with_residual_data) msg_ss << " with residual connection"; PrettyLogDetail(msg_ss.str().c_str()); } void CPUQuantizePass::QuantizeFc(Graph* graph) const { GraphPatternDetector gpd; auto pattern = gpd.mutable_pattern(); patterns::FCMKLDNN fc_pattern{pattern, name_scope_}; auto* fc_input = gpd.mutable_pattern() ->NewNode("fc_quantizer/input") ->AsInput() ->assert_is_op_input("fc", "Input"); fc_pattern(fc_input, false); int quantize_fc_count = 0; auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph, Graph* g) { VLOG(4) << "Quantize fc op"; GET_IR_NODE_FROM_SUBGRAPH(fc, fc, fc_pattern); auto* fc_op_desc = fc->Op(); // skip if should not be quantized if (!fc_op_desc->GetAttrIfExists("use_quantizer")) { LogQuantizationDisabled(fc); return; } if (!fc_op_desc->GetAttrIfExists("use_mkldnn")) { return; } GET_IR_NODE_FROM_SUBGRAPH(weights, weights, fc_pattern); GET_IR_NODE_FROM_SUBGRAPH(input, input, fc_pattern); GET_IR_NODE_FROM_SUBGRAPH(output, output, fc_pattern); if (!AreScalesPresentForNodes(fc, {input, weights})) { LogCannotQuantizeOp(fc); return; } bool is_input_unsigned{false}; auto input_scale = GetScaleValueForNode(input, &is_input_unsigned); QuantizeInput(g, fc, input, "Input", input_scale, is_input_unsigned, "Scale_in"); auto weight_scale_tensor = GetScaleTensorForNode(weights); EigenVectorArrayMap eigen_tensor{weight_scale_tensor.data(), weight_scale_tensor.numel(), 1}; eigen_tensor *= static_cast(S8_MAX); std::vector filter_scale{ weight_scale_tensor.data(), weight_scale_tensor.data() + weight_scale_tensor.numel()}; fc->Op()->SetAttr("Scale_weights", filter_scale); // if quantization scale is missing for output tensor, return fp32 data if (AreScalesPresentForNodes(fc, {output})) { bool is_output_unsigned{false}; auto output_scale = GetScaleValueForNode(output, &is_output_unsigned); DequantizeOutput(g, fc, output, "Out", output_scale, is_output_unsigned, "Scale_out"); } else { fc->Op()->SetAttr("force_fp32_output", true); } ++quantize_fc_count; }; gpd(graph, handler); AddStatis(quantize_fc_count); std::stringstream msg_ss; msg_ss << "--- quantized " << quantize_fc_count << " fc ops"; PrettyLogDetail(msg_ss.str().c_str()); } void CPUQuantizePass::QuantizePool(Graph* graph) const { GraphPatternDetector gpd; auto pattern = gpd.mutable_pattern(); patterns::Pool pool_pattern{pattern, name_scope_}; pool_pattern(); int quantize_pool_count = 0; auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph, Graph* g) { VLOG(4) << "Quantize pool2d op"; GET_IR_NODE_FROM_SUBGRAPH(pool_op, pool_op, pool_pattern); auto* pool_op_desc = pool_op->Op(); // skip if should not be quantized if (!pool_op_desc->GetAttrIfExists("use_quantizer")) { LogQuantizationDisabled(pool_op); return; } GET_IR_NODE_FROM_SUBGRAPH(pool_input, pool_input, pool_pattern); GET_IR_NODE_FROM_SUBGRAPH(pool_output, pool_output, pool_pattern); if (!AreScalesPresentForNodes(pool_op, {pool_input, pool_output})) { LogCannotQuantizeOp(pool_op); return; } bool is_input_unsigned{false}; auto input_scale = GetScaleValueForNode(pool_input, &is_input_unsigned); QuantizeInput(g, pool_op, pool_input, "X", input_scale, is_input_unsigned); bool is_output_unsigned{false}; auto output_scale = GetScaleValueForNode(pool_output, &is_output_unsigned); DequantizeOutput(g, pool_op, pool_output, "Out", output_scale, is_output_unsigned); ++quantize_pool_count; }; gpd(graph, handler); AddStatis(quantize_pool_count); PrettyLogDetail("--- quantized %d pool2d ops", quantize_pool_count); } void CPUQuantizePass::QuantizeConcat(Graph* graph) const { GraphPatternDetector gpd; auto pattern = gpd.mutable_pattern(); patterns::Concat concat_pattern{pattern, name_scope_}; concat_pattern(); int quantize_concat_count = 0; auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph, Graph* g) { VLOG(4) << "Quantize concat op"; GET_IR_NODE_FROM_SUBGRAPH(concat_op, concat_op, concat_pattern); auto* concat_op_desc = concat_op->Op(); // skip if should not be quantized if (!concat_op_desc->GetAttrIfExists("use_quantizer")) { LogQuantizationDisabled(concat_op); return; } GET_IR_NODE_FROM_SUBGRAPH(concat_out, concat_out, concat_pattern); if (!AreScalesPresentForNodes(concat_op, {concat_out})) { LogCannotQuantizeOp(concat_op); return; } // if all inputs were unsigned, then the output was set to unsigned // during the scale calculation step bool are_all_inputs_unsigned{false}; auto output_scale = GetScaleValueForNode(concat_out, &are_all_inputs_unsigned); QuantizeInputs(g, concat_op, "X", are_all_inputs_unsigned); DequantizeOutput(g, concat_op, concat_out, "Out", output_scale, are_all_inputs_unsigned); ++quantize_concat_count; }; gpd(graph, handler); AddStatis(quantize_concat_count); PrettyLogDetail("--- quantized %d concat ops", quantize_concat_count); } void CPUQuantizePass::QuantizePriorBox(Graph* graph) const { GraphPatternDetector gpd; auto pattern = gpd.mutable_pattern(); patterns::PriorBox prior_box_pattern{pattern, name_scope_}; prior_box_pattern(); int quantize_prior_box_count = 0; auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph, Graph* g) { VLOG(4) << "Quantize prior_box op"; GET_IR_NODE_FROM_SUBGRAPH(prior_box_op, prior_box_op, prior_box_pattern); auto* prior_box_op_desc = prior_box_op->Op(); // skip if should not be quantized if (!prior_box_op_desc->GetAttrIfExists("use_quantizer")) { LogQuantizationDisabled(prior_box_op); return; } GET_IR_NODE_FROM_SUBGRAPH(prior_box_input, prior_box_input, prior_box_pattern); if (!AreScalesPresentForNodes(prior_box_op, {prior_box_input})) { LogCannotQuantizeOp(prior_box_op); return; } bool is_input_unsigned{false}; auto input_scale = GetScaleValueForNode(prior_box_input, &is_input_unsigned); QuantizeInput(g, prior_box_op, prior_box_input, "Input", input_scale, is_input_unsigned); ++quantize_prior_box_count; }; gpd(graph, handler); AddStatis(quantize_prior_box_count); PrettyLogDetail("--- quantized %d prior_box ops", quantize_prior_box_count); } void CPUQuantizePass::QuantizeTranspose(Graph* graph) const { GraphPatternDetector gpd; auto pattern = gpd.mutable_pattern(); patterns::Transpose transpose_pattern{pattern, name_scope_}; transpose_pattern(); int quantize_transpose_count = 0; auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph, Graph* g) { VLOG(4) << "Quantize transpose op"; GET_IR_NODE_FROM_SUBGRAPH(transpose_op, transpose_op, transpose_pattern); auto* transpose_op_desc = transpose_op->Op(); // skip if should not be quantized if (!transpose_op_desc->GetAttrIfExists("use_quantizer")) { LogQuantizationDisabled(transpose_op); return; } GET_IR_NODE_FROM_SUBGRAPH(prev_op, prev_op, transpose_pattern); GET_IR_NODE_FROM_SUBGRAPH(next_op, next_op, transpose_pattern); // skip if prev op and next op is not quantized if (!(IsOpDequantized(prev_op)) && !(IsOpQuantized(next_op))) { return; } GET_IR_NODE_FROM_SUBGRAPH(transpose_in, transpose_in, transpose_pattern); GET_IR_NODE_FROM_SUBGRAPH(transpose_out, transpose_out, transpose_pattern); if (!AreScalesPresentForNodes(transpose_op, {transpose_in, transpose_out})) { LogCannotQuantizeOp(transpose_op); return; } bool is_input_unsigned{false}; auto input_scale = GetScaleValueForNode(transpose_in, &is_input_unsigned); QuantizeInput(g, transpose_op, transpose_in, "X", input_scale, is_input_unsigned); bool is_output_unsigned{false}; auto output_scale = GetScaleValueForNode(transpose_out, &is_output_unsigned); DequantizeOutput(g, transpose_op, transpose_out, "Out", output_scale, is_output_unsigned); ++quantize_transpose_count; }; gpd(graph, handler); AddStatis(quantize_transpose_count); PrettyLogDetail("--- quantized %d transpose ops", quantize_transpose_count); } void CPUQuantizePass::QuantizeReshape(Graph* graph) const { GraphPatternDetector gpd; auto pattern = gpd.mutable_pattern(); patterns::Reshape reshape_pattern{pattern, name_scope_}; reshape_pattern(); int quantize_reshape_count = 0; auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph, Graph* g) { VLOG(4) << "Quantize reshape op"; GET_IR_NODE_FROM_SUBGRAPH(reshape_op, reshape_op, reshape_pattern); auto* reshape_op_desc = reshape_op->Op(); // skip if should not be quantized if (!reshape_op_desc->GetAttrIfExists("use_quantizer")) { LogQuantizationDisabled(reshape_op); return; } GET_IR_NODE_FROM_SUBGRAPH(prev_op, prev_op, reshape_pattern); GET_IR_NODE_FROM_SUBGRAPH(next_op, next_op, reshape_pattern); // skip if prev op and next op is not quantized if (!(IsOpDequantized(prev_op)) && !(IsOpQuantized(next_op))) { return; } GET_IR_NODE_FROM_SUBGRAPH(reshape_in, reshape_in, reshape_pattern); GET_IR_NODE_FROM_SUBGRAPH(reshape_out, reshape_out, reshape_pattern); if (!AreScalesPresentForNodes(reshape_op, {reshape_in, reshape_out})) { LogCannotQuantizeOp(reshape_op); return; } bool is_input_unsigned{false}; auto input_scale = GetScaleValueForNode(reshape_in, &is_input_unsigned); QuantizeInput(g, reshape_op, reshape_in, "X", input_scale, is_input_unsigned); bool is_output_unsigned{false}; auto output_scale = GetScaleValueForNode(reshape_out, &is_output_unsigned); DequantizeOutput(g, reshape_op, reshape_out, "Out", output_scale, is_output_unsigned); ++quantize_reshape_count; }; gpd(graph, handler); AddStatis(quantize_reshape_count); PrettyLogDetail("--- quantized %d reshape ops", quantize_reshape_count); } void CPUQuantizePass::QuantizeMatmul(Graph* graph) const { GraphPatternDetector gpd; auto pattern = gpd.mutable_pattern(); patterns::Matmul matmul_pattern{pattern, name_scope_}; matmul_pattern(); int quantize_matmul_count = 0; auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph, Graph* g) { VLOG(4) << "Quantize matmul op"; GET_IR_NODE_FROM_SUBGRAPH(matmul_op, matmul_op, matmul_pattern); auto* matmul_op_desc = matmul_op->Op(); // skip if should not be quantized if (!matmul_op_desc->GetAttrIfExists("use_quantizer")) { LogQuantizationDisabled(matmul_op); return; } GET_IR_NODE_FROM_SUBGRAPH(prev_op_x, prev_op_x, matmul_pattern); GET_IR_NODE_FROM_SUBGRAPH(prev_op_y, prev_op_y, matmul_pattern); // skip if prev ops are not quantized if (!IsOpDequantized(prev_op_x) || !IsOpDequantized(prev_op_y)) { return; } GET_IR_NODE_FROM_SUBGRAPH(matmul_in_x, matmul_in_x, matmul_pattern); GET_IR_NODE_FROM_SUBGRAPH(matmul_in_y, matmul_in_y, matmul_pattern); GET_IR_NODE_FROM_SUBGRAPH(matmul_out, matmul_out, matmul_pattern); if (!AreScalesPresentForNodes(matmul_op, {matmul_in_x, matmul_in_y})) { LogCannotQuantizeOp(matmul_op); return; } bool is_x_unsigned{false}, is_y_unsigned{false}; auto input_x_scale = GetScaleValueForNode(matmul_in_x, &is_x_unsigned); auto input_y_scale = GetScaleValueForNode(matmul_in_y, &is_y_unsigned); PADDLE_ENFORCE_EQ( is_x_unsigned, is_y_unsigned, platform::errors::InvalidArgument( "Matmul inputs should have the same value of is_unsigned")); QuantizeInput(g, matmul_op, matmul_in_x, "X", input_x_scale, is_x_unsigned, "Scale_x"); QuantizeInput(g, matmul_op, matmul_in_y, "Y", input_y_scale, is_y_unsigned, "Scale_y"); // if quantization scale is missing for output tensor, return fp32 data if (AreScalesPresentForNodes(matmul_op, {matmul_out})) { bool is_output_unsigned{false}; auto output_scale = GetScaleValueForNode(matmul_out, &is_output_unsigned); DequantizeOutput(g, matmul_op, matmul_out, "Out", output_scale, is_output_unsigned, "Scale_out"); } else { matmul_op->Op()->SetAttr("force_fp32_output", true); } ++quantize_matmul_count; }; gpd(graph, handler); AddStatis(quantize_matmul_count); PrettyLogDetail("--- quantized %d matmul ops", quantize_matmul_count); } void CPUQuantizePass::QuantizeElementwiseAdd(Graph* graph) const { GraphPatternDetector gpd; auto pattern = gpd.mutable_pattern(); patterns::ElementwiseAdd elementwise_add_pattern{pattern, name_scope_}; elementwise_add_pattern( pattern->NewNode(elementwise_add_pattern.elementwise_add_x_repr()), pattern->NewNode(elementwise_add_pattern.elementwise_add_y_repr())); int quantize_elementwise_add_count = 0; auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph, Graph* g) { VLOG(4) << "Quantize elementwise_add op"; GET_IR_NODE_FROM_SUBGRAPH(elementwise_add_op, elementwise_add_op, elementwise_add_pattern); auto* elementwise_add_op_desc = elementwise_add_op->Op(); // skip if should not be quantized if (!elementwise_add_op_desc->GetAttrIfExists("use_quantizer")) { LogQuantizationDisabled(elementwise_add_op); return; } GET_IR_NODE_FROM_SUBGRAPH(elementwise_add_x, elementwise_add_x, elementwise_add_pattern); GET_IR_NODE_FROM_SUBGRAPH(elementwise_add_y, elementwise_add_y, elementwise_add_pattern); GET_IR_NODE_FROM_SUBGRAPH(elementwise_add_out, elementwise_add_out, elementwise_add_pattern); if (!AreScalesPresentForNodes(elementwise_add_op, {elementwise_add_x, elementwise_add_y})) { LogCannotQuantizeOp(elementwise_add_op); return; } bool is_x_unsigned{false}, is_y_unsigned{false}; auto input_x_scale = GetScaleValueForNode(elementwise_add_x, &is_x_unsigned); auto input_y_scale = GetScaleValueForNode(elementwise_add_y, &is_y_unsigned); // TODO(sfraczek): add support for different signness if (is_x_unsigned != is_y_unsigned) { LogCannotQuantizeOp(elementwise_add_op, "ElementwiseAdd inputs must be of the same type."); return; } QuantizeInput(g, elementwise_add_op, elementwise_add_x, "X", input_x_scale, is_x_unsigned, "Scale_x"); QuantizeInput(g, elementwise_add_op, elementwise_add_y, "Y", input_y_scale, is_y_unsigned, "Scale_y"); // if quantization scale is missing for output tensor, return fp32 data if (AreScalesPresentForNodes(elementwise_add_op, {elementwise_add_out})) { bool is_output_unsigned{false}; auto output_scale = GetScaleValueForNode(elementwise_add_out, &is_output_unsigned); DequantizeOutput(g, elementwise_add_op, elementwise_add_out, "Out", output_scale, is_output_unsigned, "Scale_out"); } else { elementwise_add_op->Op()->SetAttr("force_fp32_output", true); } ++quantize_elementwise_add_count; }; gpd(graph, handler); AddStatis(quantize_elementwise_add_count); PrettyLogDetail("--- quantized %d elementwise_add ops", quantize_elementwise_add_count); } void CPUQuantizePass::ApplyImpl(ir::Graph* graph) const { VLOG(3) << "Quantizing the graph."; PADDLE_ENFORCE(graph); FusePassBase::Init(name_scope_, graph); PADDLE_ENFORCE(param_scope()); QuantizeConv(graph, false /* with_residual_data */); QuantizeConv(graph, true /* with_residual_data */); QuantizePool(graph); QuantizeConcat(graph); QuantizePriorBox(graph); QuantizeTranspose(graph); QuantizeFc(graph); QuantizeReshape(graph); QuantizeMatmul(graph); QuantizeElementwiseAdd(graph); } } // namespace ir } // namespace framework } // namespace paddle REGISTER_PASS(cpu_quantize_pass, paddle::framework::ir::CPUQuantizePass) .RequirePassAttr("quant_var_scales");