# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from op_test import OpTest from paddle.fluid import core from paddle.fluid.op import Operator class TestShareDataOp(OpTest): def setUp(self): self.op_type = "share_data" input = np.random.rand(2, 3, 5).astype("float32") self.inputs = {'X': input} self.outputs = {'Out': input} def test_check_output(self): self.check_output() class TestShareDataOpOnDifferentPlaces(unittest.TestCase): def get_places(self): places = [core.CPUPlace()] if core.is_compiled_with_cuda(): places.append(core.CUDAPlace(0)) return places def check_with_tensor(self, place): scope = core.Scope() np_array = np.random.rand(2, 3, 5).astype("float32") # initialize input and output variable x = scope.var('X').get_tensor() x.set(np_array, place) out = scope.var("Out").get_tensor() op = Operator("share_data", X="X", Out="Out") op.run(scope, place) self.assertTrue(np.allclose(np_array, out)) def check_with_selected_rows(self, place): scope = core.Scope() x_rows = [0, 1, 5, 4, 19] x_height = 20 row_numel = 2 np_array = np.ones((len(x_rows), row_numel)).astype("float32") # initialize input variable x = scope.var('X').get_selected_rows() x.set_rows(x_rows) x.set_height(x_height) x_tensor = x.get_tensor() x_tensor.set(np_array, place) # initialize the Out variable out = scope.var("Out").get_selected_rows() out_tensor = out.get_tensor() op = Operator("share_data", X="X", Out="Out") op.run(scope, place) out_height = out.height() out_rows = out.rows() self.assertTrue(np.allclose(np_array, out_tensor)) self.assertEqual(x_height, out_height) self.assertEqual(x_rows, out_rows) def test_check_output(self): for place in self.get_places(): self.check_with_selected_rows(place) self.check_with_tensor(place) if __name__ == '__main__': unittest.main()