import paddle.v2 as paddle import numpy as np # init paddle paddle.init(use_gpu=False) # network config x = paddle.layer.data(name='x', type=paddle.data_type.dense_vector(2)) y_predict = paddle.layer.fc(input=x, size=1, act=paddle.activation.Linear()) y = paddle.layer.data(name='y', type=paddle.data_type.dense_vector(1)) cost = paddle.layer.mse_cost(input=y_predict, label=y) # create parameters parameters = paddle.parameters.create(cost) # create optimizer optimizer = paddle.optimizer.Momentum(momentum=0) # create trainer trainer = paddle.trainer.SGD(cost=cost, parameters=parameters, update_equation=optimizer) # event_handler to print training info def event_handler(event): if isinstance(event, paddle.event.EndIteration): if event.batch_id % 1 == 0: print "Pass %d, Batch %d, Cost %f" % (event.pass_id, event.batch_id, event.cost) # define training dataset reader def train_reader(): train_x = np.array([[1, 1], [1, 2], [3, 4], [5, 2]]) train_y = np.array([-2, -3, -7, -7]) def reader(): for i in xrange(train_y.shape[0]): yield train_x[i], train_y[i] return reader # define feeding map feeding = {'x': 0, 'y': 1} # training trainer.train( reader=paddle.batch( train_reader(), batch_size=1), feeding=feeding, event_handler=event_handler, num_passes=100)