// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/reduce_kernel.h" #include "paddle/phi/backends/all_context.h" #include "paddle/phi/core/kernel_registry.h" namespace phi { template void SumKernel(const Context& dev_ctx, const DenseTensor& x, const std::vector& dims, DataType out_dtype, bool keep_dim, DenseTensor* out) { bool reduce_all = false; SumRawKernel(dev_ctx, x, dims, keep_dim, reduce_all, out_dtype, out); } template void MeanKernel(const Context& dev_ctx, const DenseTensor& x, const std::vector& dims, bool keep_dim, DenseTensor* out) { bool reduce_all = false; MeanRawKernel(dev_ctx, x, dims, keep_dim, reduce_all, out); } template void ProdKernel(const Context& dev_ctx, const DenseTensor& x, const std::vector& dims, bool keep_dim, DenseTensor* out) { bool reduce_all = false; ProdRawKernel(dev_ctx, x, dims, keep_dim, reduce_all, out); } template void MaxKernel(const Context& dev_ctx, const DenseTensor& x, const std::vector& dims, bool keep_dim, DenseTensor* out) { bool reduce_all = false; MaxRawKernel(dev_ctx, x, dims, keep_dim, reduce_all, out); } template void MinKernel(const Context& dev_ctx, const DenseTensor& x, const std::vector& dims, bool keep_dim, DenseTensor* out) { bool reduce_all = false; MinRawKernel(dev_ctx, x, dims, keep_dim, reduce_all, out); } template void AllKernel(const Context& dev_ctx, const DenseTensor& x, const std::vector& dims, bool keep_dim, DenseTensor* out) { bool reduce_all = false; AllRawKernel(dev_ctx, x, dims, keep_dim, reduce_all, out); } template void AnyKernel(const Context& dev_ctx, const DenseTensor& x, const std::vector& dims, bool keep_dim, DenseTensor* out) { bool reduce_all = false; AnyRawKernel(dev_ctx, x, dims, keep_dim, reduce_all, out); } } // namespace phi using complex64 = ::phi::dtype::complex; using complex128 = ::phi::dtype::complex; PD_REGISTER_KERNEL( mean, CPU, ALL_LAYOUT, phi::MeanKernel, float, double, bool) {} PD_REGISTER_KERNEL(sum, CPU, ALL_LAYOUT, phi::SumKernel, bool, float, double, phi::dtype::float16, int16_t, int, int64_t, complex64, complex128) { kernel->OutputAt(0).SetDataType(paddle::experimental::DataType::UNDEFINED); } PD_REGISTER_KERNEL( prod, CPU, ALL_LAYOUT, phi::ProdKernel, float, double, int, int64_t) {} PD_REGISTER_KERNEL( max, CPU, ALL_LAYOUT, phi::MaxKernel, float, double, int, int64_t) {} PD_REGISTER_KERNEL( min, CPU, ALL_LAYOUT, phi::MinKernel, float, double, int, int64_t) {} PD_REGISTER_KERNEL(all, CPU, ALL_LAYOUT, phi::AllKernel, bool) {} PD_REGISTER_KERNEL(any, CPU, ALL_LAYOUT, phi::AnyKernel, bool) {} #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) PD_REGISTER_KERNEL(mean, GPU, ALL_LAYOUT, phi::MeanKernel, float, double, bool, int, int64_t, phi::dtype::float16) {} PD_REGISTER_KERNEL(sum, GPU, ALL_LAYOUT, phi::SumKernel, bool, float, double, phi::dtype::float16, phi::dtype::bfloat16, int16_t, int, int64_t, complex64, complex128) { kernel->OutputAt(0).SetDataType(paddle::experimental::DataType::UNDEFINED); } PD_REGISTER_KERNEL( prod, GPU, ALL_LAYOUT, phi::ProdKernel, float, double, int, int64_t) {} PD_REGISTER_KERNEL( max, GPU, ALL_LAYOUT, phi::MaxKernel, float, double, int, int64_t) {} PD_REGISTER_KERNEL( min, GPU, ALL_LAYOUT, phi::MinKernel, float, double, int, int64_t) {} PD_REGISTER_KERNEL(all, GPU, ALL_LAYOUT, phi::AllKernel, bool) {} PD_REGISTER_KERNEL(any, GPU, ALL_LAYOUT, phi::AnyKernel, bool) {} #endif