# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle.fluid as fluid import numpy as np import unittest class TestOpNameConflict(unittest.TestCase): def test_conflict(self): main = fluid.Program() startup = fluid.Program() with fluid.unique_name.guard(): with fluid.program_guard(main, startup): x = fluid.data(name="x", shape=[1], dtype='float32') y = fluid.data(name="y", shape=[1], dtype='float32') z = fluid.data(name="z", shape=[1], dtype='float32') m = fluid.layers.elementwise_add(x, y, name="add") n = fluid.layers.elementwise_add(y, z, name="add") p = m + n place = fluid.CPUPlace() exe = fluid.Executor(place) m_v, n_v, p_v = exe.run(feed={ "x": np.ones((1), "float32") * 2, "y": np.ones((1), "float32") * 3, "z": np.ones((1), "float32") * 5 }, fetch_list=[m, n, p]) self.assertEqual(m_v[0], 5.0) self.assertEqual(n_v[0], 8.0) self.assertEqual(p_v[0], 13.0) def test_layers(self): main = fluid.Program() startup = fluid.Program() with fluid.unique_name.guard(): with fluid.program_guard(main, startup): place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda( ) else fluid.CPUPlace() exe = fluid.Executor(place) data = fluid.data( name='data', shape=[None, 1, 2, 2], dtype='float32') tensor = fluid.data( name='tensor', shape=[None, 32, 64], dtype='float32') x = fluid.data( name='x', shape=[None, 1], dtype='float32', lod_level=1) input_scale = fluid.layers.create_parameter( shape=[1], dtype="float32", default_initializer=fluid.initializer.Constant(2.0)) input_bias = fluid.layers.create_parameter( shape=[1], dtype="float32", default_initializer=fluid.initializer.Constant(0.5)) out_affine = fluid.layers.affine_channel( data, scale=input_scale, bias=input_bias) out_similarity = fluid.layers.similarity_focus( input=data, axis=1, indexes=[0]) position_tensor = fluid.layers.add_position_encoding( input=tensor, alpha=1.0, beta=1.0) x_reversed = fluid.layers.sequence_reverse(x) exe.run(fluid.default_startup_program()) test_program = fluid.default_main_program().clone(for_test=True) x_d = fluid.create_lod_tensor( np.array([[1.1], [2.2], [3.3], [4.4]]).astype('float32'), [[1, 3]], place) outs = exe.run( test_program, fetch_list=[ out_affine, out_similarity, position_tensor, x_reversed ], feed={ data.name: np.ones([1, 1, 2, 2]).astype('float32'), tensor.name: np.ones([1, 32, 64]).astype('float32'), x.name: x_d }, return_numpy=False) if __name__ == '__main__': unittest.main()