# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import numpy as np import paddle from test_dist_base import runtime_main, TestParallelDyGraphRunnerBase from paddle.nn import Layer, Embedding class SimpleNet(Layer): def __init__(self, hidden_size, vocab_size, num_steps=20, init_scale=0.1, is_sparse=False, dtype="float32"): super(SimpleNet, self).__init__() self.hidden_size = hidden_size self.vocab_size = vocab_size self.init_scale = init_scale self.num_steps = num_steps self.embedding = Embedding( self.vocab_size, self.hidden_size, sparse=is_sparse, weight_attr=paddle.ParamAttr( name='embedding_param', initializer=paddle.nn.initializer.Uniform( low=-init_scale, high=init_scale))) self.softmax_weight = self.create_parameter( attr=paddle.ParamAttr(), shape=[self.hidden_size, self.vocab_size], dtype=dtype, default_initializer=paddle.nn.initializer.Uniform( low=-self.init_scale, high=self.init_scale)) self.softmax_bias = self.create_parameter( attr=paddle.ParamAttr(), shape=[self.vocab_size], dtype=dtype, default_initializer=paddle.nn.initializer.Uniform( low=-self.init_scale, high=self.init_scale)) # add tmp var self.tmp = self.create_parameter( attr=paddle.ParamAttr(), shape=[self.vocab_size], dtype=dtype, default_initializer=paddle.nn.initializer.Uniform( low=-self.init_scale, high=self.init_scale)) def forward(self, input, label): x_emb = self.embedding(input) fc = paddle.matmul(x_emb, self.softmax_weight) # it use stop gradient to block gradient return fc.stop_gradient = True fc = paddle.add(fc, self.softmax_bias) projection = paddle.reshape(fc, shape=[-1, self.vocab_size]) loss = paddle.nn.functional.softmax_with_cross_entropy( logits=projection, label=label, soft_label=False) loss = paddle.reshape(loss, shape=[-1, self.num_steps]) loss = paddle.mean(loss, axis=[0]) loss = paddle.sum(loss) return {"loss": loss} # global configs batch_size = 4 batch_num = 200 hidden_size = 10 vocab_size = 1000 num_steps = 3 init_scale = 0.1 def fake_sample_reader(): def __reader__(): for i in range(batch_num): x_data = np.arange(num_steps).astype('int64') y_data = np.arange(1, 1 + num_steps).astype('int64') yield x_data, y_data return __reader__ class TestSparseEmbeddingUnusedVars(TestParallelDyGraphRunnerBase): def get_model(self): model = SimpleNet( hidden_size=hidden_size, vocab_size=vocab_size, num_steps=num_steps, init_scale=init_scale, is_sparse=False) train_reader = paddle.batch( fake_sample_reader(), batch_size=batch_size, drop_last=True) optimizer = paddle.optimizer.SGD(learning_rate=0.001, parameters=model.parameters()) return model, train_reader, optimizer def run_one_loop(self, model, optimizer, batch): x_data = np.array([x[0].reshape(3) for x in batch]).astype('int64') y_data = np.array([x[1].reshape(3) for x in batch]).astype('int64') x_data = x_data.reshape((-1, num_steps, 1)) y_data = y_data.reshape((-1, 1)) x = paddle.to_tensor(x_data) y = paddle.to_tensor(y_data) dy_loss = model(x, y) return dy_loss["loss"] if __name__ == "__main__": runtime_main(TestSparseEmbeddingUnusedVars)