# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import contextlib import unittest import numpy as np import paddle import paddle.fluid as fluid import paddle.fluid.dygraph as dygraph from paddle.fluid import core from paddle.fluid.optimizer import SGDOptimizer from paddle.fluid.dygraph.nn import Linear from test_dist_base import runtime_main, TestParallelDyGraphRunnerBase np.random.seed(2021) paddle.seed(1024) batch_size = 4 batch_num = 1000 class SimpleNet(fluid.Layer): def __init__(self): super(SimpleNet, self).__init__() self.net_a = paddle.nn.Sequential( paddle.nn.Linear(10, 20), paddle.nn.Linear(20, 20), paddle.nn.Linear(20, 5)) self.net_b = paddle.nn.Sequential( paddle.nn.Linear(10, 20), paddle.nn.Linear(20, 20), paddle.nn.Linear(20, 5)) self.step = 0 def forward(self, x): return paddle.to_tensor(0.0, dtype='float32') def fake_sample_reader(): def __reader__(): for i in range(batch_num): x_data = np.random.random_sample((10, )).astype('float32') yield x_data return __reader__ class TestSimpleNet(TestParallelDyGraphRunnerBase): def get_model(self): model = SimpleNet() train_reader = paddle.batch( fake_sample_reader(), batch_size=batch_size, drop_last=True) optimizer = paddle.optimizer.SGD(learning_rate=0.001, parameters=model.parameters()) return model, train_reader, optimizer def run_one_loop(self, model, optimizer, batch): x_data = np.array([x for x in batch]) x_data = x_data.reshape((-1, 10)) x = paddle.to_tensor(x_data) out = model(x) loss = out.sum() / len(batch) return loss if __name__ == "__main__": runtime_main(TestSimpleNet)