/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include "paddle/fluid/framework/device_worker_factory.h" #include "paddle/fluid/framework/threadpool.h" #include "paddle/fluid/framework/trainer.h" #include "paddle/fluid/platform/lodtensor_printer.h" #if defined PADDLE_WITH_PSCORE #include "paddle/fluid/distributed/ps/service/communicator/communicator.h" #endif namespace paddle { namespace framework { extern Barrier g_barrier; void MultiTrainer::Initialize(const TrainerDesc& trainer_desc, Dataset* dataset) { thread_num_ = trainer_desc.thread_num(); SetDataset(dataset); ParseDumpConfig(trainer_desc); mpi_rank_ = trainer_desc.mpi_rank(); mpi_size_ = trainer_desc.mpi_size(); dump_file_num_ = trainer_desc.dump_file_num(); for (int i = 0; i < trainer_desc.downpour_param().stat_var_names_size(); i++) { need_merge_var_names_.push_back( trainer_desc.downpour_param().stat_var_names(i)); } #ifdef PADDLE_WITH_HETERPS for (int i = 0; i < thread_num_; ++i) { int num = trainer_desc.worker_places(i); platform::CUDAPlace place = platform::CUDAPlace(num); places_.push_back(place); } #endif user_define_dump_filename_ = trainer_desc.user_define_dump_filename(); // get filelist from trainer_desc here const std::vector readers = dataset->GetReaders(); VLOG(3) << "readers num: " << readers.size(); // change thread num to readers num thread_num_ = readers.size(); VLOG(3) << "worker thread num: " << thread_num_; workers_.resize(thread_num_); #if defined PADDLE_WITH_PSCORE if (trainer_desc.thread_barrier()) { paddle::distributed::Communicator::GetInstance()->BarrierTriggerReset( thread_num_); } #endif g_barrier.reset(thread_num_); for (int i = 0; i < thread_num_; ++i) { workers_[i] = DeviceWorkerFactory::CreateDeviceWorker( trainer_desc.device_worker_name()); workers_[i]->SetNeedDumpField(need_dump_field_); workers_[i]->SetNeedDumpParam(need_dump_param_); workers_[i]->SetDumpFieldVector(dump_fields_); workers_[i]->SetDumpParamVector(dump_param_); workers_[i]->InitRandomDumpConfig(trainer_desc); workers_[i]->Initialize(trainer_desc); workers_[i]->SetDeviceIndex(i); workers_[i]->SetDataFeed(readers[i]); workers_[i]->SetThreadNum(thread_num_); } // set debug here SetDebug(trainer_desc.debug()); } std::string MultiTrainer::GetDumpPath(int tid) { if (!user_define_dump_filename_.empty()) { return string::format_string("%s/part-%s-%05d", dump_fields_path_.c_str(), user_define_dump_filename_.c_str(), tid); } return string::format_string( "%s/part-%03d-%05d", dump_fields_path_.c_str(), mpi_rank_, tid); } void MultiTrainer::InitDumpEnv() { queue_ = paddle::framework::MakeChannel(); for (int i = 0; i < thread_num_; ++i) { workers_[i]->SetChannelWriter(queue_.get()); } dump_thread_num_ = 1; if (dump_file_num_ > mpi_size_) { dump_thread_num_ = dump_file_num_ / mpi_size_; if (dump_file_num_ % mpi_size_ > mpi_rank_) { dump_thread_num_ += 1; } } for (int i = 0; i < dump_thread_num_; i++) { dump_thread_.push_back( std::thread(std::bind(&TrainerBase::DumpWork, this, i))); } } // call only after all resources are set in current trainer void MultiTrainer::InitTrainerEnv(const ProgramDesc& main_program, const platform::Place& place) { for (int i = 0; i < thread_num_; ++i) { #ifdef PADDLE_WITH_HETERPS workers_[i]->SetPlace(places_[i]); workers_[i]->SetReaderPlace(places_[i]); workers_[i]->SetDeviceContext( platform::DeviceContextPool::Instance().Get(places_[i])); #else workers_[i]->SetPlace(place); workers_[i]->SetReaderPlace(place); #endif workers_[i]->SetRootScope(root_scope_); workers_[i]->CreateDeviceResource(main_program); // Program workers_[i]->BindingDataFeedMemory(); workers_[i]->CacheProgram(main_program); } #ifdef PADDLE_WITH_HETERPS for (int num = 0; num < thread_num_; ++num) { auto place = places_[num]; Scope* scope = workers_[num]->GetThreadScope(); auto& block = main_program.Block(0); for (auto& var : block.AllVars()) { if (var->Persistable()) { auto name = var->Name(); Variable* root_var = root_scope_->FindVar(name); if (!root_var) { continue; } if (root_var->IsType()) { continue; } phi::DenseTensor* root_tensor = root_var->GetMutable(); auto* ptr = scope->Var(name); InitializeVariable(ptr, proto::VarType::LOD_TENSOR); phi::DenseTensor* thread_tensor = ptr->GetMutable(); TensorCopy(*root_tensor, place, thread_tensor); } } } #endif for (auto& var : main_program.Block(0).AllVars()) { if (var->Persistable()) { auto it = std::find(need_merge_var_names_.begin(), need_merge_var_names_.end(), var->Name()); if (it == need_merge_var_names_.end() && var->GetType() != proto::VarType::SELECTED_ROWS) { VLOG(2) << "train param: " << var->Name(); trainable_param_.push_back(var->Name()); } } } } void MultiTrainer::InitOtherEnv(const ProgramDesc& main_program) { if (need_dump_field_ || need_dump_param_) { InitDumpEnv(); } #ifdef PADDLE_WITH_PSCORE // pull dense param first auto communicator = paddle::distributed::Communicator::GetInstance(); // for unittest which call train_from_dataset but does not call // fleet.init_worker() first if (communicator == nullptr) { VLOG(1) << "MultiTrainer::InitOtherEnv Communicator is null!"; } else { auto& recv_ctx = communicator->GetRecvCtxMap(); communicator->PullDense(recv_ctx); VLOG(3) << "init other env done."; } #endif } Scope* MultiTrainer::GetWorkerScope(int thread_id) { return workers_[thread_id]->GetThreadScope(); } inline std::vector>& GetThreadPool(int thread_num) { static std::vector> thread_pools; if (!thread_pools.empty()) { return thread_pools; } thread_pools.resize(thread_num); for (int i = 0; i < thread_num; ++i) { thread_pools[i].reset(new paddle::framework::ThreadPool(1)); } return thread_pools; } void MultiTrainer::Run() { VLOG(3) << "Going to run"; auto pool = GetThreadPool(thread_num_); std::vector> wait_futures; CHECK_EQ(static_cast(pool.size()), thread_num_); for (int i = 0; i < thread_num_; ++i) { if (!debug_) { wait_futures.emplace_back( pool[i]->Run([this, i]() { workers_[i]->TrainFiles(); })); } else { wait_futures.emplace_back( pool[i]->Run([this, i]() { workers_[i]->TrainFilesWithProfiler(); })); } } for (auto& th : wait_futures) { th.get(); } } #ifdef PADDLE_WITH_HETERPS void MultiTrainer::MergeDenseParam() { #ifdef PADDLE_WITH_PSCORE auto communicator = paddle::distributed::Communicator::GetInstance(); auto thread_scope = workers_[0]->GetThreadScope(); if (communicator == nullptr) { for (auto& name : trainable_param_) { VLOG(2) << "merge var " << name << " to root scope"; Variable* root_var = root_scope_->FindVar(name); phi::DenseTensor* root_tensor = root_var->GetMutable(); Variable* var = thread_scope->FindVar(name); phi::DenseTensor* tensor = var->GetMutable(); TensorCopySync((*tensor), root_tensor->place(), root_tensor); } } else { auto& recv_ctx = communicator->GetRecvCtxMap(); for (auto& iter : recv_ctx) { auto& varnames = iter.second; for (auto& name : varnames) { VLOG(2) << "merge var " << name << " to root scope"; Variable* root_var = root_scope_->FindVar(name); phi::DenseTensor* root_tensor = root_var->GetMutable(); Variable* var = thread_scope->FindVar(name); phi::DenseTensor* tensor = var->GetMutable(); TensorCopySync((*tensor), root_tensor->place(), root_tensor); } } } #endif } #endif template void MultiTrainer::MergeToRootScope(phi::DenseTensor* root_tensor, phi::DenseTensor* tensor) { phi::DenseTensor tmp_root; TensorCopy(*root_tensor, platform::CPUPlace(), &tmp_root); T* tmp_root_data = tmp_root.data(); phi::DenseTensor tmp_tensor; TensorCopy(*tensor, platform::CPUPlace(), &tmp_tensor); T* data = tmp_tensor.data(); for (int i = 0; i < tmp_tensor.numel(); i++) { tmp_root_data[i] += data[i]; } TensorCopy(tmp_root, platform::CPUPlace(), root_tensor); } void MultiTrainer::Finalize() { if (need_dump_field_ || need_dump_param_) { FinalizeDumpEnv(); } for (size_t i = 0; i < need_merge_var_names_.size(); i++) { Variable* root_var = root_scope_->FindVar(need_merge_var_names_[i]); if (root_var == nullptr) { continue; } phi::DenseTensor* root_tensor = root_var->GetMutable(); for (int j = 1; j < thread_num_; j++) { Scope* cur_thread_scope = workers_[j]->GetThreadScope(); Variable* thread_var = cur_thread_scope->FindVar(need_merge_var_names_[i]); if (thread_var == nullptr) { continue; } phi::DenseTensor* thread_tensor = thread_var->GetMutable(); #define MergeCallback(cpp_type, proto_type) \ do { \ if (framework::TransToProtoVarType(root_tensor->dtype()) == proto_type) { \ if (framework::TransToProtoVarType(thread_tensor->dtype()) != \ proto_type) { \ VLOG(0) << "Error: thread id=" << j << ", need_merge_var_names_[" << i \ << "] " << need_merge_var_names_[i] \ << ", root tensor type=" << root_tensor->dtype() \ << ", thread tensor type=" << thread_tensor->dtype(); \ exit(-1); \ } \ MergeToRootScope(root_tensor, thread_tensor); \ } \ } while (0) _ForEachDataType_(MergeCallback); } } #ifdef PADDLE_WITH_HETERPS MergeDenseParam(); #endif #if defined PADDLE_WITH_PSCORE auto communicator = paddle::distributed::Communicator::GetInstance(); // for unittest which does not call fleet.init_worker() first if (communicator == nullptr) { VLOG(1) << "MultiTrainer::Finalize communicator is null!"; } else { if (communicator->_worker_ptr != nullptr) { communicator->_worker_ptr->Flush(); VLOG(1) << "MultiTrainer::Finalize ps client flush done"; } else { VLOG(1) << "communicator->_worker_ptr is null"; } } #endif root_scope_->DropKids(); } } // end namespace framework } // end namespace paddle