// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include "paddle/fluid/lite/api/cxx_api.h" #include "paddle/fluid/lite/api/lite_api_test_helper.h" #include "paddle/fluid/lite/api/paddle_use_kernels.h" #include "paddle/fluid/lite/api/paddle_use_ops.h" #include "paddle/fluid/lite/api/paddle_use_passes.h" #include "paddle/fluid/lite/api/test_helper.h" #include "paddle/fluid/lite/core/compatible_tensor.h" #include "paddle/fluid/lite/core/op_registry.h" // for googlenet namespace paddle { namespace lite { TEST(Step_rnn, test_step_rnn_lite_x86) { lite::Predictor predictor; std::vector valid_places({Place{TARGET(kHost), PRECISION(kFloat)}, Place{TARGET(kX86), PRECISION(kInt64)}, Place{TARGET(kX86), PRECISION(kFloat)}}); // LOG(INFO)<<"FLAGS_eval_googlenet_dir:"< passes( {/*"lite_fc_fuse_pass",*/ "static_kernel_pick_pass", "variable_place_inference_pass", "type_target_cast_pass", "variable_place_inference_pass", "io_copy_kernel_pick_pass", "variable_place_inference_pass", "runtime_context_assign_pass"}); predictor.Build(model_dir, Place{TARGET(kX86), PRECISION(kFloat)}, valid_places, passes); std::vector target_names = { "item_type_id", "mthid_id", "source_id_id", "layout_id", "mark_id", "category_id", "subcategory_id", "score_segment_id", "item_attention_id", "queue_num_id", "micro_video_id", "vertical_type_id"}; for (size_t i = 0; i < target_names.size(); i++) { auto* input_tensor = predictor.GetInput(i); int size = 0; if (i == 6 || i == 8) { input_tensor->Resize( lite::DDim(std::vector({5, 1}))); input_tensor->raw_tensor().set_lod({{0, 5}}); size = 5; } else { input_tensor->Resize( lite::DDim(std::vector({1, 1}))); input_tensor->raw_tensor().set_lod({{0, 1}}); size = 1; } auto* data = input_tensor->mutable_data(); for (int i = 0; i < size; i++) data[i] = 1; } for (int i = 0; i < FLAGS_warmup; ++i) { predictor.Run(); } auto start = GetCurrentUS(); for (int i = 0; i < FLAGS_repeats; ++i) { predictor.Run(); } // LOG(INFO) << "================== Speed Report ==================="; LOG(INFO) << ", warmup: " << FLAGS_warmup << ", repeats: " << FLAGS_repeats << ", spend " << (GetCurrentUS() - start) / FLAGS_repeats / 1000.0 << " ms in average."; std::vector> results; // i = 1 results.emplace_back(std::vector({0.471981, 0.528019})); auto* out = predictor.GetOutput(0); ASSERT_EQ(out->dims().size(), 2); ASSERT_EQ(out->dims()[0], 1); ASSERT_EQ(out->dims()[1], 2); for (int i = 0; i < results.size(); ++i) { for (int j = 0; j < results[i].size(); ++j) { LOG(INFO) << "output[" << i << "]" << "[" << j << "]:" << out->data()[j + (out->dims()[1] * i)]; // EXPECT_NEAR(out->data()[j + (out->dims()[1] * i)], // results[i][j], // 1e-6); } } } } // namespace lite } // namespace paddle