# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np from op_test import OpTest class TestSequenceExpandAs(OpTest): def setUp(self): self.op_type = 'sequence_expand_as' self.set_data() self.compute() def set_data(self): x_data = np.random.uniform(0.1, 1, [3, 1]).astype('float32') y_data = np.random.uniform(0.1, 1, [8, 1]).astype('float32') y_lod = [[1, 3, 4]] self.inputs = {'X': x_data, 'Y': (y_data, y_lod)} def compute(self): x = self.inputs['X'] x_data, x_lod = x if type(x) == tuple else (x, None) y_data, y_lod = self.inputs['Y'] assert len(y_lod) == 1 and len(y_lod[0]) == x_data.shape[0] repeats = [] for i in range(len(y_lod[0])): repeat_num = y_lod[0][i] if repeat_num == 0: continue repeats.extend([i for _ in range(repeat_num)]) out_data = x_data[repeats] self.outputs = {'Out': (out_data, y_lod)} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(["X"], "Out") class TestSequenceExpandAsCase1(TestSequenceExpandAs): def set_data(self): x_data = np.random.uniform(0.1, 1, [5, 1]).astype('float32') x_lod = [[2, 3]] y_data = np.random.uniform(0.1, 1, [10, 1]).astype('float32') y_lod = [[2, 2, 0, 3, 3]] self.inputs = {'X': (x_data, x_lod), 'Y': (y_data, y_lod)} class TestSequenceExpandAsCase2(TestSequenceExpandAs): def set_data(self): x_data = np.random.uniform(0.1, 1, [5, 1]).astype('float32') x_lod = [[2, 3]] y_data = np.random.uniform(0.1, 1, [10, 1]).astype('float32') y_lod = [[0, 4, 0, 6, 0]] self.inputs = {'X': (x_data, x_lod), 'Y': (y_data, y_lod)} class TestSequenceExpandAsCase3(TestSequenceExpandAs): def set_data(self): x_data = np.random.uniform(0.1, 1, [1, 2, 2]).astype('float32') x_lod = [[1]] y_data = np.random.uniform(0.1, 1, [2, 2, 2]).astype('float32') y_lod = [[2]] self.inputs = {'X': (x_data, x_lod), 'Y': (y_data, y_lod)} if __name__ == '__main__': unittest.main()