# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tarfile import paddle.fluid as fluid import paddle from paddle.fluid import core URL = 'http://paddle-unittest-data.gz.bcebos.com/python_paddle_fluid_tests_demo_async-executor/train_data.tar.gz' MD5 = '2a405a31508969b3ab823f42c0f522ca' def bow_net(data, label, dict_dim=89528, emb_dim=128, hid_dim=128, hid_dim2=96, class_dim=2): """ BOW net This model is from https://github.com/PaddlePaddle/models: models/fluid/PaddleNLP/text_classification/nets.py """ # embedding emb = fluid.layers.embedding( input=data, size=[dict_dim, emb_dim], is_sparse=True) bow = fluid.layers.sequence_pool(input=emb, pool_type='sum') bowh = fluid.layers.tanh(bow) # fc layer after conv fc_1 = fluid.layers.fc(input=bowh, size=hid_dim, act="tanh") fc_2 = fluid.layers.fc(input=fc_1, size=hid_dim2, act="tanh") # probability of each class prediction = fluid.layers.fc(input=[fc_2], size=class_dim, act="softmax") # cross entropy loss cost = fluid.layers.cross_entropy(input=prediction, label=label) # mean loss avg_cost = fluid.layers.mean(x=cost) acc = fluid.layers.accuracy(input=prediction, label=label) return avg_cost, acc, prediction def train(): # Download data with tarfile.open(paddle.dataset.common.download(URL, "imdb", MD5)) as tarf: tarf.extractall(path='./') tarf.close() # Initialize dataset description dataset = fluid.DatasetFactory().create_dataset() dataset.set_batch_size(128) # See API doc for how to change other fields # define network # input text data data = fluid.layers.data( name="words", shape=[1], dtype="int64", lod_level=1) # label data label = fluid.layers.data(name="label", shape=[1], dtype="int64") dataset.set_use_var([data, label]) avg_cost, acc, prediction = bow_net(data, label) sgd_optimizer = fluid.optimizer.Adagrad(learning_rate=0.002) opt_ops, weight_and_grad = sgd_optimizer.minimize(avg_cost) # Run startup program startup_program = fluid.default_startup_program() place = fluid.CPUPlace() executor = fluid.Executor(place) executor.run(startup_program) main_program = fluid.default_main_program() epochs = 10 filelist = ["train_data/part-%d" % i for i in range(12)] dataset.set_filelist(filelist) for i in range(epochs): dataset.set_thread(4) executor.train_from_dataset( main_program, # This can be changed during iteration dataset, # This can be changed during iteration debug=False) fluid.io.save_inference_model('imdb/epoch%d.model' % i, [data.name, label.name], [acc], executor) if __name__ == "__main__": train()