# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from type_mapping import attr_types_map, input_types_map, output_type_map # tests for typename def is_input(s): return s in input_types_map def is_attr(s): return s in attr_types_map def is_output(s): return s in output_type_map def is_vec(s): return s.endswith("[]") def is_scalar(s): return re.match(r"Scalar(\(\w+\))*", s) is not None def is_intarray(s): return s == 'IntArray' def is_datatype(s): return s == 'DataType' def is_initializer_list(s): return s == "{}" def is_base_op(op): return "kernel" in op and "infer_meta" in op def is_composite_op(op): return "composite" in op def supports_selected_rows_kernel(op): return is_base_op(op) and len(op["kernel"]["func"]) == 2 def supports_inplace(op): return op['inplace'] is not None def supports_no_need_buffer(op): for input in op["inputs"]: if input["no_need_buffer"]: return True return False def is_tensor_list(s): return s == 'Tensor[]'