// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #ifdef PADDLE_WITH_XPU #include "paddle/fluid/operators/matmul_v2_op.h" #include #include #include "paddle/fluid/operators/xpu_api_wrapper.h" namespace paddle { namespace operators { template static void MatMulXPUFunction(const Tensor* x, const Tensor* y, Tensor* out, bool trans_x, bool trans_y, const paddle::framework::ExecutionContext& ctx) { using XPUType = typename XPUTypeTrait::Type; const auto& x_dims = x->dims(); const auto& y_dims = y->dims(); auto& dev_ctx = ctx.template device_context(); auto mat_dim_a = phi::funcs::CreateMatrixDescriptor( RowMatrixFromVector(x_dims), 0, trans_x); auto mat_dim_b = phi::funcs::CreateMatrixDescriptor( ColumnMatrixFromVector(y_dims), 0, trans_y); if (x_dims.size() == 3 && y_dims.size() <= 2) { // if transpose_X is true, the transpose cost much time if (!trans_x) { mat_dim_a.height_ *= mat_dim_a.batch_size_; mat_dim_a.batch_size_ = 0; } else { mat_dim_b.batch_size_ = mat_dim_a.batch_size_; mat_dim_b.height_ = mat_dim_b.height_ / mat_dim_b.batch_size_; } } if (mat_dim_a.width_ == mat_dim_b.height_) { if (mat_dim_a.batch_size_ == 0 && mat_dim_b.batch_size_ == 1) { mat_dim_a.batch_size_ = mat_dim_b.batch_size_ = 0; } if (mat_dim_a.batch_size_ == 1 && mat_dim_b.batch_size_ == 0) { mat_dim_a.batch_size_ = mat_dim_b.batch_size_ = 0; } } PADDLE_ENFORCE_EQ(mat_dim_a.width_, mat_dim_b.height_, platform::errors::InvalidArgument( "Shape mistake in matmul_v2_op xdims = %s ydims = %s " "x_trans = %d y_trans = %d", x_dims.to_str(), y_dims.to_str(), mat_dim_a.trans_, mat_dim_b.trans_)); PADDLE_ENFORCE_EQ(mat_dim_a.batch_size_, mat_dim_b.batch_size_, platform::errors::InvalidArgument( "Shape mistake in matmul_v2_op xdims = %s ydims = %s " "x_trans = %d y_trans = %d", x_dims.to_str(), y_dims.to_str(), mat_dim_a.trans_, mat_dim_b.trans_)); T* data_c = out->data(); int m = mat_dim_a.height_; int n = mat_dim_b.width_; int k = mat_dim_a.width_; int batch_size = mat_dim_a.batch_size_; int ldx = mat_dim_a.trans_ ? m : k; int ldy = mat_dim_b.trans_ ? k : n; int ldout = n; if (batch_size <= 1) { int r = 0; r = xpu_fc_wrapper( dev_ctx.x_context(), reinterpret_cast(x->data()), reinterpret_cast(y->data()), reinterpret_cast(data_c), m, n, k, mat_dim_a.trans_, mat_dim_b.trans_, nullptr, nullptr, nullptr, ldx, ldy, ldout, 1.0, 0, nullptr, xpu::Activation_t::LINEAR); PADDLE_ENFORCE_EQ( r, XPU_SUCCESS, platform::errors::External( "XPU fc kernel return wrong value[%d %s] , m = %d, n = " "%d, " "k = %d, a_tr = %d, b_tr = %d", r, XPUAPIErrorMsg[r], m, n, k, mat_dim_a.trans_, mat_dim_b.trans_)); } else { // batch matmul int r = xpu::fc_batched( dev_ctx.x_context(), // Context* ctx, batch_size, // int batch_size, mat_dim_a.trans_, // bool x_trans, mat_dim_b.trans_, // bool w_trans, m, // int m, n, // int n, k, // int k, 1.0, // float alpha, reinterpret_cast(x->data()), // const TX* x, mat_dim_a.stride_, // int stride_a, reinterpret_cast(y->data()), // const TW* w, mat_dim_b.stride_, // int stride_b, 0.0, // float beta, reinterpret_cast(data_c), // TY* y, m * n, // int stride_c, nullptr, // const float* x_maxptr, nullptr); // const float* w_maxptr PADDLE_ENFORCE_EQ(r, XPU_SUCCESS, platform::errors::External( "XPU fc_batched kernel return wrong value[%d %s]", r, XPUAPIErrorMsg[r])); } } template class MatMulV2XPUKernel : public framework::OpKernel { public: void Compute(const paddle::framework::ExecutionContext& ctx) const override { auto* x = ctx.Input("X"); auto* y = ctx.Input("Y"); auto* out = ctx.Output("Out"); bool trans_x = ctx.Attr("trans_x"); bool trans_y = ctx.Attr("trans_y"); out->mutable_data(ctx.GetPlace()); if (std::is_same::value) { MatMulXPUFunction(x, y, out, trans_x, trans_y, ctx); } else { if (std::getenv("XPU_PADDLE_FC_INT32") != nullptr) { MatMulXPUFunction(x, y, out, trans_x, trans_y, ctx); } else if (std::getenv("XPU_PADDLE_FC_LOCAL_INT16") != nullptr) { MatMulXPUFunction(x, y, out, trans_x, trans_y, ctx); } else { MatMulXPUFunction(x, y, out, trans_x, trans_y, ctx); } } } }; template static framework::Tensor XPUFoldHeadAndLastDims( const DeviceContext& context, const framework::Tensor& input) { using XPUType = typename XPUTypeTrait::Type; auto in_dims = input.dims(); if (in_dims.size() != 3) { return input; } framework::Tensor output; output.Resize({in_dims[1], in_dims[0], in_dims[2]}); output.mutable_data(context.GetPlace()); std::vector in_shape_host = {static_cast(in_dims[0]), static_cast(in_dims[1]), static_cast(in_dims[2])}; std::vector axis_host = {1, 0, 2}; int r = xpu::transpose( context.x_context(), reinterpret_cast(input.data()), reinterpret_cast(output.data()), in_shape_host, axis_host); PADDLE_ENFORCE_EQ(r, XPU_SUCCESS, platform::errors::External( "XPU transpose kernel return wrong value[%d %s]", r, XPUAPIErrorMsg[r])); output.Resize({in_dims[1], in_dims[0] * in_dims[2]}); return output; } template class MatMulV2XPUGradKernel : public framework::OpKernel { public: void MatMul(const framework::ExecutionContext& ctx, const framework::Tensor& a, bool trans_a, const framework::Tensor& b, bool trans_b, framework::Tensor* out) const { out->mutable_data(ctx.GetPlace()); if (std::is_same::value) { MatMulXPUFunction(&a, &b, out, trans_a, trans_b, ctx); } else { if (std::getenv("XPU_PADDLE_FC_INT32") != nullptr) { MatMulXPUFunction(&a, &b, out, trans_a, trans_b, ctx); } else if (std::getenv("XPU_PADDLE_FC_LOCAL_INT16") != nullptr) { MatMulXPUFunction(&a, &b, out, trans_a, trans_b, ctx); } else { MatMulXPUFunction(&a, &b, out, trans_a, trans_b, ctx); } } } void CalcInputGrad(const framework::ExecutionContext& context, const framework::Tensor& a, bool trans_a, bool is_fold_init_dims_a, const framework::Tensor& b, bool trans_b, bool is_fold_init_dims_b, framework::Tensor* out) const { if (out == nullptr) return; bool need_combine = (a.dims().size() == 3 || b.dims().size() == 3) && out->dims().size() == 2; if (!need_combine) { MatMul(context, a, trans_a, b, trans_b, out); } else { auto& dev_ctx = context.template device_context(); MatMul( context, is_fold_init_dims_a ? FoldInitDims(a) : XPUFoldHeadAndLastDims( dev_ctx, a), trans_a, is_fold_init_dims_b ? FoldInitDims(b) : XPUFoldHeadAndLastDims( dev_ctx, b), trans_b, out); } } void Compute(const framework::ExecutionContext& context) const override { bool transpose_x = context.Attr("trans_x"); bool transpose_y = context.Attr("trans_y"); auto x = *context.Input("X"); auto y = *context.Input("Y"); auto dout = *context.Input(framework::GradVarName("Out")); auto* dx = context.Output(framework::GradVarName("X")); auto* dy = context.Output(framework::GradVarName("Y")); ReshapeXYOutIntoMatrixSequence(&x, &y, &dout, transpose_x, transpose_y); framework::DDim dx_dims; if (dx) { dx_dims = dx->dims(); if (dx_dims != x.dims()) { dx->Resize(x.dims()); } } framework::DDim dy_dims; if (dy) { dy_dims = dy->dims(); if (dy_dims != y.dims()) { dy->Resize(y.dims()); } } if (transpose_x && transpose_y) { CalcInputGrad(context, y, true, true, dout, true, false, dx); CalcInputGrad(context, dout, true, true, x, true, false, dy); } else if (transpose_x) { CalcInputGrad(context, y, false, false, dout, true, false, dx); CalcInputGrad(context, x, false, false, dout, false, true, dy); } else if (transpose_y) { CalcInputGrad(context, dout, false, false, y, false, true, dx); CalcInputGrad(context, dout, true, true, x, false, true, dy); } else { CalcInputGrad(context, dout, false, false, y, true, false, dx); CalcInputGrad(context, x, true, true, dout, false, true, dy); } if (dx) { if (dx_dims != x.dims()) { dx->Resize(dx_dims); } } if (dy) { if (dy_dims != y.dims()) { dy->Resize(dy_dims); } } } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; namespace plat = paddle::platform; REGISTER_OP_XPU_KERNEL(matmul_v2, ops::MatMulV2XPUKernel, ops::MatMulV2XPUKernel); REGISTER_OP_XPU_KERNEL(matmul_v2_grad, ops::MatMulV2XPUGradKernel, ops::MatMulV2XPUGradKernel); #endif