# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import numpy as np import unittest import contextlib import paddle import paddle.fluid as fluid paddle.enable_static() file_dir = os.path.dirname(os.path.abspath(__file__)) fluid.load_op_library(os.path.join(file_dir, 'librelu2_op.so')) from paddle.fluid.layer_helper import LayerHelper def relu2(x, name=None): helper = LayerHelper("relu2", **locals()) out = helper.create_variable( type=x.type, name=name, dtype=x.dtype, persistable=False) helper.append_op(type="relu2", inputs={"X": x}, outputs={"Y": out}) return out @contextlib.contextmanager def scope_prog_guard(): prog = fluid.Program() startup_prog = fluid.Program() scope = fluid.core.Scope() with fluid.scope_guard(scope): with fluid.program_guard(prog, startup_prog): yield def linear_fc(data, label, use_custom_relu): hidden = fluid.layers.fc(data, size=128) hidden = relu2(hidden) if use_custom_relu else fluid.layers.relu(hidden) hidden = fluid.layers.fc(hidden, size=128) hidden = fluid.layers.fc(hidden, size=10, act='softmax') loss = fluid.layers.cross_entropy(input=hidden, label=label) loss = fluid.layers.mean(loss) return loss def custom_op_test(use_gpu=True, use_custom_relu=True): with scope_prog_guard(): np.random.seed(0) fluid.default_startup_program().random_seed = 10 fluid.default_main_program().random_seed = 10 data = fluid.layers.data( name='data', shape=[1, 28, 28], dtype='float32') label = fluid.layers.data(name='label', shape=[1], dtype='int64') loss = linear_fc(data, label, use_custom_relu) optimizer = fluid.optimizer.Momentum(learning_rate=0.1, momentum=0.9) optimizer.minimize(loss) place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace() exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) compile_program = fluid.compiler.CompiledProgram( fluid.default_main_program()).with_data_parallel( loss_name=loss.name) reader = paddle.batch(paddle.dataset.mnist.train(), batch_size=32) feeder = fluid.DataFeeder(feed_list=[data, label], place=place) num = 4 for i, data in enumerate(reader()): outs, = exe.run(compile_program, feed=feeder.feed(data), fetch_list=[loss]) if i == num: break return outs class CustomOpTest(unittest.TestCase): @classmethod def setUpClass(cls): os.environ['CPU_NUM'] = str(2) def test_cpu(self): actual = custom_op_test(False, True) expect = custom_op_test(False, False) self.assertEqual(actual.all(), expect.all()) def test_gpu(self): if not fluid.core.is_compiled_with_cuda(): return actual = custom_op_test(True, True) expect = custom_op_test(True, False) self.assertEqual(actual.all(), expect.all()) if __name__ == '__main__': unittest.main()