/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include #include #include #include #include "paddle/fluid/framework/attribute.h" #include "paddle/fluid/framework/type_defs.h" #include "paddle/fluid/framework/var_desc.h" namespace paddle { namespace framework { class VarDesc; class BlockDesc; class ProgramDesc; class OpDesc { public: OpDesc() {} OpDesc(const std::string &type, const VariableNameMap &inputs, const VariableNameMap &outputs, const AttributeMap &attrs); OpDesc(const proto::OpDesc &desc, BlockDesc *block); explicit OpDesc(BlockDesc *block) : block_(block) {} OpDesc(const OpDesc &other, BlockDesc *block); void CopyFrom(const OpDesc &op_desc); proto::OpDesc *Proto(); std::string Type() const { return desc_.type(); } void SetType(const std::string &type) { desc_.set_type(type); } const std::vector &Input(const std::string &name) const; std::vector Input(const std::string &name, bool with_attr_var) const; std::vector InputArgumentNames(bool with_attr_var = false) const; void SetInput(const std::string ¶m_name, const std::vector &args); const std::vector &Output(const std::string &name) const; bool HasOutput(const std::string &name) const; std::vector OutputArgumentNames() const; void SetOutput(const std::string ¶m_name, const std::vector &args); void RemoveOutput(const std::string &name); void RemoveInput(const std::string &name); bool HasAttr(const std::string &name, bool with_attr_var = false) const; bool HasProtoAttr(const std::string &name) const; proto::AttrType GetAttrType(const std::string &name, bool with_attr_var = false) const; std::vector AttrNames(bool with_attr_var = false) const; void SetAttr(const std::string &name, const Attribute &v); void RemoveAttr(const std::string &name); void SetVarAttr(const std::string &name, VarDesc *var); void SetVarsAttr(const std::string &name, std::vector vars); void SetBlockAttr(const std::string &name, BlockDesc *block); void SetBlocksAttr(const std::string &name, std::vector blocks); Attribute GetAttr(const std::string &name, bool with_attr_var = false) const; template T GetAttrIfExists(const std::string &name) const { T result{}; if (HasAttr(name)) { result = PADDLE_GET_CONST(T, GetAttr(name)); } return result; } const proto::OpProto::Attr &GetProtoAttr(const std::string &name) const; Attribute GetNullableAttr(const std::string &name) const; int GetBlockAttrId(const std::string &name) const; std::vector GetBlocksAttrIds(const std::string &name) const; void Rename(const std::string &old_name, const std::string &new_name); void RenameOutput(const std::string &old_name, const std::string &new_name); void RenameInput(const std::string &old_name, const std::string &new_name); // Only be used in C++ const AttributeMap &GetAttrMap() const; // Only be used in C++ void SetAttrMap(const AttributeMap &attr_map); std::vector InputNames(bool with_attr_var = false) const { return MapKeys(inputs_); } std::vector OutputNames() const { return MapKeys(outputs_); } const VariableNameMap &Inputs() const { return inputs_; } VariableNameMap Inputs(bool with_attr_var) const; const VariableNameMap &Outputs() const { return outputs_; } VariableNameMap *MutableInputs() { this->need_update_ = true; return &this->inputs_; } VariableNameMap *MutableOutputs() { this->need_update_ = true; return &this->outputs_; } AttributeMap *MutableAttrMap() { this->need_update_ = true; return &this->attrs_; } void CheckAttrs(); void InferShape(const BlockDesc &block); void InferVarType(BlockDesc *block) const; void SetIsTarget(bool is_target) { desc_.set_is_target(is_target); } void Flush(); BlockDesc *Block() { return this->block_; } const BlockDesc *Block() const { return this->block_; } void UpdateVarAttr(const std::string &name, const Attribute &attr); // The Id() and OrignalId() are only used for auto parallel. uint64_t Id() const { return id_; } uint64_t OriginalId() const { return original_id_; } void SetOriginalId(uint64_t original_id) { original_id_ = original_id; } private: friend class ProgramDesc; // Find VarDesc from OpDesc located Block into global Block VarDesc *FindVarRecursive(const std::string &name); template static std::vector MapKeys(const MapType &map) { std::vector ret_val; ret_val.reserve(map.size()); std::transform( map.begin(), map.end(), std::back_inserter(ret_val), [](const typename MapType::value_type &pair) { return pair.first; }); return ret_val; } // This thread-safe implementation seems to be redudent since the neural // networks are usually constructed in a single thread static uint64_t GenerateId() { static std::atomic uid{0}; // Must start from one return ++uid; } proto::OpDesc desc_; BlockDesc *block_{nullptr}; // not_own // input arg name => input variable names VariableNameMap inputs_; // output arg name => output variable names VariableNameMap outputs_; // attribute name => all original attrs AttributeMap attrs_; // need_update_ indicate there some local changes not be synchronized. If // local changes should be synchronized, need_update_ should be set to true. bool need_update_{false}; // Note: the id_ is unique (only for auto parallel). uint64_t id_ = GenerateId(); // Note: the orignal_id_ is used for referring to the original OpDesc // that the current OpDesc is built from (only for auto parallel). // The default original_id_ is same as the id_, which means the // current OpDesc is not built from the other one. uint64_t original_id_ = id_; }; std::vector AttrVarNames(const Attribute &attr); } // namespace framework } // namespace paddle