# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import os import pickle import io import datetime import time from ..fluid.layer_helper import LayerHelper from ..fluid.framework import Variable from ..fluid.framework import in_dygraph_mode from ..fluid.framework import OpProtoHolder from ..fluid.framework import _non_static_mode from ..fluid.framework import _in_legacy_dygraph from ..fluid.framework import convert_np_dtype_to_dtype_ from ..fluid.framework import _varbase_creator from ..fluid.data_feeder import convert_dtype from ..fluid.data_feeder import check_variable_and_dtype from ..fluid.data_feeder import check_type from ..fluid.data_feeder import check_dtype from ..fluid.layers.tensor import fill_constant from ..fluid.layers import utils from ..fluid.dygraph import layers from ..fluid.dygraph.parallel import prepare_context import paddle import paddle.fluid as fluid import paddle.fluid.core as core from paddle import _C_ops, _legacy_C_ops import paddle.fluid.dygraph_utils as dygraph_utils import contextlib from .fleet.layers.mpu.mp_ops import split from .fleet.layers.mpu.mp_ops import _c_identity from .fleet.layers.mpu.mp_ops import _c_concat from .fleet.layers.mpu.mp_ops import _c_split from .fleet.layers.mpu.mp_ops import _mp_allreduce from .fleet.layers.mpu.mp_ops import _c_lookup_table from .fleet.layers.mpu.mp_ops import _Linear from .fleet.layers.mpu.mp_ops import _set_var_distributed from .fleet.layers.mpu.mp_ops import _c_softmax_with_cross_entropy from .fleet.layers.mpu.mp_ops import _linear from .fleet.layers.mpu.mp_ops import _parallel_linear from .fleet.layers.mpu.mp_ops import _parallel_embedding from .communication.comm_utils import ReduceOp __all__ = [] class Group(): """ The abstract representation of group. """ def __init__(self, rank, rank_num, id=0, ranks=[], pg=None, name=None): self.rank = rank self.nranks = rank_num self.id = id self.ranks = ranks self.pg = pg self.name = name def is_member(self): if self.rank < 0: return False if self.nranks < 2: return False return True def get_group_rank(self, rank): if self.is_member() and rank in self.ranks: return self.ranks.index(rank) else: return -1 @property def process_group(self): return self.pg @property def world_size(self): return self.nranks if self.rank >= 0 else -1 def __repr__(self): debug_str = "rank: {}, nranks: {}, id: {}, ranks: ".format( self.rank, self.nranks, self.id) debug_str += ", ".join(map(str, self.ranks)) debug_str += "; name: " debug_str += self.name if self.name else "None" return debug_str _global_env = None def _get_global_env(): global _global_env if not _global_env: _global_env = paddle.distributed.ParallelEnv() return _global_env # group map : the map of all group, 0 for GlobalGroup # Dict[int, Group] _group_map = {} _global_env_gid = 0 # group map by name : the map of all groups from their names # Dict[name, Group] _group_map_by_name = {} # backend map by group : the map of all backend from their groups # Dict[group, backend] _group_map_backend = {} # Name of the default group for init_parallel_env _default_group_name = "_default_pg" _valid_backend_list = ['nccl', 'gloo', 'hccl', 'heter', 'xccl'] _default_store = None # the default tcp store _default_backend = None _default_timeout = datetime.timedelta(seconds=1800) _start_ring_id = 0 def _set_default_backend(backend): global _default_backend _default_backend = backend def _set_default_store(store): global _default_store _default_store = store def _get_group_map(): global _group_map if _global_env_gid not in _group_map: genv = _get_global_env() _group_map[_global_env_gid] = Group(genv.rank, genv.world_size, ranks=list(range(genv.world_size))) return _group_map def _get_global_group(): return _get_group_map()[_global_env_gid] def _get_group_map_by_name(): global _group_map_by_name return _group_map_by_name def _get_default_group(): global _group_map_by_name assert is_initialized(), ("Call paddle.distributed.init_parallel_env first " "to initialize the distributed environment.") return _get_group_map_by_name()[_default_group_name] def _set_group_map(gid, group): global _group_map assert gid not in _group_map _group_map[gid] = group def _set_group_map_by_name(name, group): global _group_map_by_name assert name not in _group_map_by_name _group_map_by_name[name] = group def _set_group_map_backend(group, backend): global _group_map_backend assert group not in _group_map_backend _group_map_backend[group] = backend def _new_ring_id(): # NOTE(liyurui): For compatible reason, auto parallel and eager mode relay on previous syntax. if in_dygraph_mode(): global _start_ring_id _start_ring_id += 1 return _start_ring_id + max(_get_global_env().nrings, 9) else: return len(_get_group_map()) + max(_get_global_env().nrings, 9) def _get_reduce_op(reduce_op, func_name): if reduce_op == ReduceOp.SUM: return core.ReduceOp.SUM elif reduce_op == ReduceOp.MAX: return core.ReduceOp.MAX elif reduce_op == ReduceOp.MIN: return core.ReduceOp.MIN elif reduce_op == ReduceOp.PROD: return core.ReduceOp.PRODUCT else: raise ValueError("Unknown reduce_op type for {}.".format(func_name)) def get_group(id=0): """ Get group instance by group id. Args: id (int): the group id. Default value is 0. Returns: Group: the group instance. Examples: .. code-block:: python ... gid = paddle.distributed.new_group([2,4,6]) paddle.distributed.get_group(gid.id) """ gm = _get_group_map() return gm[id] if id in gm else None def _new_process_group_impl(backend, store, rank, world_size, group_name, pg_options, group_id=0, src_rank=None, dst_rank=None): pg = None genv = _get_global_env() if backend != 'heter': assert src_rank is None and dst_rank is None, ( "src_rank and dst_rank " "can only be set for heter backend.") assert backend in _valid_backend_list, "Unsupported backend: %s." % backend if backend == "gloo": place = core.CPUPlace() pg = core.ProcessGroupGloo(store, rank, world_size, place, group_id) elif backend == "nccl": place = core.CUDAPlace(genv.device_id) pg = core.ProcessGroupNCCL(store, rank, world_size, place, group_id) elif backend == "hccl": place = core.NPUPlace(genv.device_id) pg = core.ProcessGroupHCCL(store, rank, world_size, place, group_id) elif backend == "xccl": place = core.CustomPlace(genv.device_type, genv.device_id) pg = core.ProcessGroupCustom(store, rank, world_size, place, group_id) elif backend == "heter": place = None if core.is_compiled_with_cuda(): place = core.CUDAPlace(genv.device_id) elif core.is_compiled_with_npu(): place = core.NPUPlace(genv.device_id) cluster_id = int(os.getenv("CLUSTER_ID", "-1")) assert cluster_id >= 0, "please set the CLUSTER_ID variable." cluster_size = os.getenv("CLUSTER_SIZE", None) assert cluster_size, "please set the CLUSTER_SIZE variable." cluster_size = cluster_size.split(",") cluster_size = [int(s) for s in cluster_size] switch_ep = os.getenv("CLUSTER_SWITCH", None) assert switch_ep, "please set the CLUSTER_SWITCH variable." cluster_size_cumsum = np.cumsum(cluster_size) cluster_offset = 0 if cluster_id == 0 else cluster_size_cumsum[ cluster_id - 1] global_rank = cluster_offset + rank global_world_size = cluster_size_cumsum[-1] global_rank, global_world_size = _get_global_config(backend, rank) pg = core.ProcessGroupHeter(store, rank=global_rank, world_size=global_world_size, place=place, gid=group_id, local_rank=rank, local_size=world_size, gloo_rank=cluster_id, gloo_size=len(cluster_size), with_switch=True, switch_endpoint=switch_ep, src_rank=src_rank, dst_rank=dst_rank) return pg def barrier(group=None): """ Barrier among all participators in the group. Args: group (Group): The group instance return by new_group or None for global default group. Returns: None. Examples: .. code-block:: python import paddle from paddle.distributed import init_parallel_env paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id) init_parallel_env() paddle.distributed.barrier() """ if group is not None and not group.is_member(): return if in_dygraph_mode(): group = _get_default_group() if group is None else group task = group.process_group.barrier() task.wait() return ring_id = 0 if group is None else group.id temp = fill_constant([1], dtype="int32", value="1") if _non_static_mode(): return _legacy_C_ops.barrier(temp, temp, 'ring_id', ring_id) op_type = 'barrier' if not isinstance(ring_id, int): raise ValueError("The type of 'group' for barrier must be int.") helper = LayerHelper(op_type, **locals()) helper.append_op(type=op_type, inputs={'X': [temp]}, outputs={'Out': [temp]}, attrs={'ring_id': ring_id}) # _custom_gid provides a way for users to # set the group id, which is usually useful # to be compatible with the static mode. _custom_gid = None def _set_custom_gid(gid): global _custom_gid _custom_gid = gid def _barrier_by_tcp_store(group_name, store, timeout): global_rank = paddle.distributed.get_rank() global_world_size = paddle.distributed.get_world_size() if global_world_size < 2: return barrier_prefix = "Barrier/" + group_name + "/" is_master = (global_rank == 0) def _check_keys_ready(wait_keys): start_time = time.time() while len(wait_keys) > 0: time.sleep(0.1) elapse_time = time.time() - start_time if datetime.timedelta(seconds=elapse_time) > timeout: raise RuntimeError( "Timeout while initializing process group {}." "Keys {} are not ready sinck rank {} is waiting them." "Two reason may cause this error:\n 1. The create process group api should be called by all ranks.\n" " 2. Try to increase the waiting time.\n".format( group_name, wait_keys, global_rank)) wait_keys = list( filter(lambda key: int(store.get(key)) != 1, wait_keys)) # all the workers set their exiting key and exit # the master will wait for all workers' exiting key, ensure to exit in the end if is_master: wait_keys = [ barrier_prefix + str(rank) for rank in range(1, global_world_size) ] _check_keys_ready(wait_keys) else: store.add(barrier_prefix + str(global_rank), 1) def new_group(ranks=None, backend=None, timeout=_default_timeout): """ Creates a new distributed communication group. Args: ranks (list): The global ranks of group members. backend (str): The backend used to create group, only nccl is supported now. timeout (datetime.timedelta, optional): The waiting timeout for store relevant options, default is 30 minutes. Returns: Group: The group instance. Examples: .. code-block:: python import paddle paddle.distributed.init_parallel_env() tindata = paddle.randn(shape=[2, 3]) gp = paddle.distributed.new_group([2,4,6]) paddle.distributed.all_reduce(tindata, group=gp, sync_op=False) """ global _custom_gid global _group_map if in_dygraph_mode(): global _default_group_name gid = _custom_gid if _custom_gid else _new_ring_id() group_name = _default_group_name + str(gid) if backend != 'heter' and (ranks is None or len(ranks) > 1): global_group = _get_default_group() global_rank = global_group.rank global_ranks = global_group.ranks backend = _default_backend if backend is None else backend if ranks is None: ranks = global_ranks assert len(ranks) <= len(global_ranks), ( "Size of new group must be less than or " "equal to that of the default global group.") size = len(ranks) ranks = sorted(ranks) if backend == 'heter' or (size > 1 and global_rank in ranks): rank = 0 if backend == 'heter' else ranks.index(global_rank) src_rank = ranks[0] if backend == 'heter' else None dst_rank = ranks[1] if backend == 'heter' else None pg = _new_process_group_impl(backend, _default_store, rank, size, group_name, pg_options=None, group_id=gid, src_rank=src_rank, dst_rank=dst_rank) else: rank = -1 pg = None group = Group(rank, size, id=gid, ranks=ranks, pg=pg, name=group_name) _group_map_by_name[group_name] = group _group_map[gid] = group _group_map_backend[group] = backend # TODO(shenliang03): This is a temporary solution to solve the problem of # hang caused by tcp paddle.distributed.barrier(group=group) # NOTE(liyurui): All processors should hang and wait using tcp store, in case master exit before sub-group is created. if backend != 'heter': _barrier_by_tcp_store(group_name, _default_store, timeout) else: print("Warning: store barrier is not supported for heter backend.") return group if not backend: backend = 'nccl' assert backend == 'nccl', ("backend other than nccl is not supported yet") genv = _get_global_env() global_rank = genv.rank ring_id = _new_ring_id() if global_rank not in ranks: gp = Group(-1, -1, ring_id, ranks) _group_map[ring_id] = gp else: ranks = sorted(ranks) group_rank = ranks.index(global_rank) group_size = len(ranks) gp = Group(group_rank, group_size, ring_id, ranks) _group_map[ring_id] = gp if group_size >= 2: strategy = core.ParallelStrategy() strategy.nranks = group_size strategy.local_rank = group_rank strategy.trainer_endpoints = [ genv.trainer_endpoints[i] for i in ranks ] strategy.current_endpoint = genv.current_endpoint strategy.nrings = 1 if core.is_compiled_with_cuda(): place = core.CUDAPlace(genv.device_id) core.NCCLParallelContext(strategy, place).init_with_ring_id(ring_id) elif core.is_compiled_with_npu(): place = core.NPUPlace(genv.device_id) core.HCCLParallelContext(strategy, place).init_with_ring_id(ring_id) elif core.is_compiled_with_mlu(): place = core.MLUPlace(genv.device_id) core.CNCLParallelContext(strategy, place).init_with_ring_id(ring_id) elif core.is_compiled_with_xpu(): place = core.XPUPlace(genv.device_id) core.BKCLParallelContext(strategy, place).init_with_ring_id(ring_id) else: assert False, ("no cuda device found") else: return gp # TODO(shenliang03): This is a temporary solution to solve the problem of # hang caused by cross-creation of new_group tmp = paddle.to_tensor( [1], dtype="int32") if _non_static_mode() else fill_constant( [0], dtype="int32", value="1") paddle.distributed.all_reduce(tmp, sync_op=True) paddle.distributed.wait(tmp) return gp def is_initialized(): """ Check whether the distributed environment has been initialized Returns (bool): `True` if distributed environment has been initialized, otherwise `False`. Examples: .. code-block:: python # required: distributed import paddle print(paddle.distributed.is_initialized()) # False paddle.distributed.init_parallel_env() print(paddle.distributed.is_initialized()) # True """ global _group_map_by_name return _default_group_name in _group_map_by_name def destroy_process_group(group=None): """ Destroy a given group for communication Args: group (ProcessGroup, optional): The group to be destroyed. All of process groups, including the default group, will be destroyed and the distributed environment will be deinitialized. Returns : None Examples: .. code-block:: python # required: distributed import paddle import paddle.distributed as dist dist.init_parallel_env() group = dist.new_group([0, 1]) dist.destroy_process_group(group) print(dist.is_initialized()) # True dist.destroy_process_group() print(dist.is_initialized()) # False """ global _group_map global _group_map_by_name pg = _get_default_group() if group is None else group assert _group_map.get(pg.id, None) is not None, "Invalid group." if group is None: _group_map.clear() _group_map_by_name.clear() _group_map_backend.clear() else: del _group_map[pg.id] del _group_map_by_name[pg.name] del _group_map_backend[pg] def wait(tensor, group=None, use_calc_stream=True): """ wait to sync stream for group. Args: tensor (Tensor): The Tensor used before sync. group (Group): The Group instance to perform sync. use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False). Default to True. Returns: None. Examples: .. code-block:: python import paddle paddle.distributed.init_parallel_env() tindata = paddle.randn(shape=[2, 3]) paddle.distributed.all_reduce(tindata, sync_op=True) paddle.distributed.wait(tindata) """ if group is not None and not group.is_member(): return ring_id = 0 if group is None else group.id if use_calc_stream: _sync_calc_stream(tensor) else: _sync_comm_stream(tensor, ring_id) def _sync_calc_stream(tensor): if _non_static_mode(): return _legacy_C_ops.c_sync_calc_stream(tensor, tensor) op_type = 'c_sync_calc_stream' helper = LayerHelper(op_type, **locals()) helper.append_op( type=op_type, inputs={'X': [tensor]}, outputs={'Out': [tensor]}, ) def _sync_comm_stream(tensor, ring_id=0): if _non_static_mode(): return _legacy_C_ops.c_sync_comm_stream([tensor], [tensor], 'ring_id', ring_id) op_type = 'c_sync_comm_stream' helper = LayerHelper(op_type, **locals()) helper.append_op( type=op_type, inputs={'X': [tensor]}, outputs={'Out': [tensor]}, attrs={'ring_id': ring_id}, ) def broadcast(tensor, src, group=None, sync_op=True): """ Broadcast a tensor from the source to all others. As shown below, one process is started with a GPU and GPU0 owns data 0. Through broadcast operator, data 0 will be sent to all GPUs from GPU0. .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/broadcast.png :width: 800 :alt: broadcast :align: center Args: tensor (Tensor): The Tensor to send if current rank is the source, or the Tensor to receive otherwise. Its data type should be float16, float32, float64, int32, int64, int8, uint8 or bool. src (int): The source rank. group (Group, optional): The group instance return by new_group or None for global default group. sync_op (bool, optional): Whether this op is a sync op. The default value is True. Returns: None. Examples: .. code-block:: python # required: distributed import paddle import paddle.distributed as dist dist.init_parallel_env() if dist.get_rank() == 0: data = paddle.to_tensor([[4, 5, 6], [4, 5, 6]]) else: data = paddle.to_tensor([[1, 2, 3], [1, 2, 3]]) dist.broadcast(data, src=1) print(data) # [[1, 2, 3], [1, 2, 3]] (2 GPUs) """ if group is not None and not group.is_member(): return if not isinstance(src, int): raise ValueError("src should be int.") if in_dygraph_mode(): group = _get_default_group() if group is None else group gsrc = group.get_group_rank(src) assert gsrc >= 0, ("src rank out of group, need global rank") task = group.process_group.broadcast(tensor, gsrc) if sync_op: task.wait() return None else: return task use_calc_stream = sync_op ring_id = ring_id = 0 if group is None else group.id gsrc = src if group is None else group.get_group_rank(src) assert gsrc >= 0, ("src rank out of group, need global rank") if _non_static_mode(): return _legacy_C_ops.c_broadcast(tensor, tensor, 'root', gsrc, 'use_calc_stream', use_calc_stream, 'ring_id', ring_id) op_type = 'c_broadcast' check_variable_and_dtype(tensor, 'tensor', [ 'float16', 'float32', 'float64', 'int32', 'int64', 'int8', 'uint8', 'bool' ], 'broadcast') helper = LayerHelper(op_type, **locals()) helper.append_op(type=op_type, inputs={'X': [tensor]}, outputs={'Out': [tensor]}, attrs={ 'root': gsrc, 'use_calc_stream': use_calc_stream, 'ring_id': ring_id, }) def all_reduce(tensor, op=ReduceOp.SUM, group=None, sync_op=True): """ Reduce a tensor over all ranks so that all get the result. As shown below, one process is started with a GPU and the data of this process is represented by its group rank. The reduce operator is sum. Through all_reduce operator, each GPU will have the sum of the data from all GPUs. .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/allreduce.png :width: 800 :alt: all_reduce :align: center Args: tensor (Tensor): The input Tensor. It also works as the output Tensor. Its data type should be float16, float32, float64, int32, int64, int8, uint8 or bool. op (ReduceOp.SUM|ReduceOp.MAX|ReduceOp.MIN|ReduceOp.PROD, optional): The operation used. Default value is ReduceOp.SUM. group (Group, optional): The group instance return by new_group or None for global default group. sync_op (bool, optional): Wether this op is a sync op. Default value is True. Returns: None. Examples: .. code-block:: python # required: distributed import paddle import paddle.distributed as dist dist.init_parallel_env() if dist.get_rank() == 0: data = paddle.to_tensor([[4, 5, 6], [4, 5, 6]]) else: data = paddle.to_tensor([[1, 2, 3], [1, 2, 3]]) dist.all_reduce(data) print(data) # [[5, 7, 9], [5, 7, 9]] (2 GPUs) """ if group is not None and not group.is_member(): return if in_dygraph_mode(): op_type = _get_reduce_op(op, "all_reduce") group = _get_default_group() if group is None else group task = group.process_group.allreduce(tensor, op_type) if sync_op: task.wait() return None else: return task use_calc_stream = sync_op ring_id = 0 if group is None else group.id if _non_static_mode(): if op == ReduceOp.SUM: return _legacy_C_ops.c_allreduce_sum_(tensor, 'use_calc_stream', use_calc_stream, 'ring_id', ring_id) elif op == ReduceOp.MAX: return _legacy_C_ops.c_allreduce_max_(tensor, 'use_calc_stream', use_calc_stream, 'ring_id', ring_id) elif op == ReduceOp.MIN: return _legacy_C_ops.c_allreduce_min_(tensor, 'use_calc_stream', use_calc_stream, 'ring_id', ring_id) elif op == ReduceOp.PROD: return _legacy_C_ops.c_allreduce_prod_(tensor, 'use_calc_stream', use_calc_stream, 'ring_id', ring_id) else: raise ValueError("Unknown parameter: {}.".format(op)) check_variable_and_dtype(tensor, 'tensor', [ 'float16', 'float32', 'float64', 'int32', 'int64', 'int8', 'uint8', 'bool' ], 'all_reduce') if op == ReduceOp.SUM: op_type = 'c_allreduce_sum' elif op == ReduceOp.MAX: op_type = 'c_allreduce_max' elif op == ReduceOp.MIN: op_type = 'c_allreduce_min' elif op == ReduceOp.PROD: op_type = 'c_allreduce_prod' if not isinstance(ring_id, int): raise ValueError("The type of 'ring_id' for all_reduce should be int.") helper = LayerHelper(op_type, **locals()) helper.append_op(type=op_type, inputs={'X': [tensor]}, outputs={'Out': [tensor]}, attrs={ 'ring_id': ring_id, 'use_calc_stream': use_calc_stream }) def reduce(tensor, dst, op=ReduceOp.SUM, group=None, sync_op=True): """ Reduce a tensor to the destination from all others. As shown below, one process is started with a GPU and the data of this process is represented by its group rank. The destination of the reduce operator is GPU0 and the process is sum. Through reduce operator, the GPU0 will owns the sum of all data from all GPUs. .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/reduce.png :width: 800 :alt: reduce :align: center Args: tensor (Tensor): The output Tensor for the destination and the input Tensor otherwise. Its data type should be float16, float32, float64, int32, int64, int8, uint8 or bool. dst (int): The destination rank id. op (ReduceOp.SUM|ReduceOp.MAX|ReduceOp.MIN|ReduceOp.PROD, optional): The operation used. Default value is ReduceOp.SUM. group (Group, optional): The group instance return by new_group or None for global default group. sync_op (bool, optional): Whether this op is a sync op. The default value is True. Returns: None. Examples: .. code-block:: python # required: distributed import paddle import paddle.distributed as dist dist.init_parallel_env() if dist.get_rank() == 0: data = paddle.to_tensor([[4, 5, 6], [4, 5, 6]]) else: data = paddle.to_tensor([[1, 2, 3], [1, 2, 3]]) dist.reduce(data, dst=0) print(data) # [[5, 7, 9], [5, 7, 9]] (2 GPUs, out for rank 0) # [[1, 2, 3], [1, 2, 3]] (2 GPUs, out for rank 1) """ if group is not None and not group.is_member(): return if in_dygraph_mode(): op_type = _get_reduce_op(op, "reduce") group = _get_default_group() if group is None else group gdst = group.get_group_rank(dst) assert gdst >= 0, ("dst rank out of group, need global rank") task = group.process_group.reduce(tensor, gdst, op_type) if sync_op: task.wait() return None else: return task use_calc_stream = sync_op ring_id = 0 if group is None else group.id gdst = dst if group is None else group.get_group_rank(dst) assert gdst >= 0, ("dst rank out of group, need global rank") if _non_static_mode(): if op == ReduceOp.SUM: return _legacy_C_ops.c_reduce_sum(tensor, tensor, 'use_calc_stream', use_calc_stream, 'ring_id', ring_id, 'root_id', gdst) elif op == ReduceOp.MAX: return _legacy_C_ops.c_reduce_max(tensor, tensor, 'use_calc_stream', use_calc_stream, 'ring_id', ring_id, 'root_id', gdst) elif op == ReduceOp.MIN: return _legacy_C_ops.c_reduce_min(tensor, tensor, 'use_calc_stream', use_calc_stream, 'ring_id', ring_id, 'root_id', gdst) elif op == ReduceOp.PROD: return _legacy_C_ops.c_reduce_prod(tensor, tensor, 'use_calc_stream', use_calc_stream, 'ring_id', ring_id, 'root_id', gdst) else: raise ValueError("Unknown parameter: {}.".format(op)) op_type = 'c_reduce' check_variable_and_dtype(tensor, 'tensor', [ 'float16', 'float32', 'float64', 'int32', 'int64', 'int8', 'uint8', 'bool' ], 'reduce') if op == ReduceOp.SUM: op_type = 'c_reduce_sum' elif op == ReduceOp.MAX: op_type = 'c_reduce_max' elif op == ReduceOp.MIN: op_type = 'c_reduce_min' elif op == ReduceOp.PROD: op_type = 'c_reduce_prod' helper = LayerHelper(op_type, **locals()) helper.append_op(type=op_type, inputs={'X': [tensor]}, outputs={'Out': [tensor]}, attrs={ 'ring_id': ring_id, 'use_calc_stream': use_calc_stream, 'root_id': gdst, }) def all_gather(tensor_list, tensor, group=None, sync_op=True): """ Gather tensors from all participators and all get the result. As shown below, one process is started with a GPU and the data of this process is represented by its group rank. Through the all_gather operator, each GPU will have data from all GPUs. .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/allgather.png :width: 800 :alt: all_gather :align: center Args: tensor_list (list): A list of output Tensors. Every element in the list must be a Tensor whose data type should be float16, float32, float64, int32, int64, int8, uint8, bool, complex64 or complex128. tensor (Tensor): The Tensor to send. Its data type should be float16, float32, float64, int32, int64, int8, uint8, bool, complex64 or complex128. group (Group, optional): The group instance return by new_group or None for global default group. sync_op (bool, optional): Whether this op is a sync op. The default value is True. Returns: None. Examples: .. code-block:: python # required: distributed import paddle import paddle.distributed as dist dist.init_parallel_env() tensor_list = [] if dist.get_rank() == 0: data = paddle.to_tensor([[4, 5, 6], [4, 5, 6]]) else: data = paddle.to_tensor([[1, 2, 3], [1, 2, 3]]) dist.all_gather(tensor_list, data) print(tensor_list) # [[[4, 5, 6], [4, 5, 6]], [[1, 2, 3], [1, 2, 3]]] (2 GPUs) """ if group is not None and not group.is_member(): return def convert_to_complex(list_of_tensor): list_of_complex = [] for tensor in list_of_tensor: list_of_complex.append(paddle.as_complex(tensor)) return list_of_complex is_input_complex = (tensor.dtype == paddle.complex64 or tensor.dtype == paddle.complex128) if is_input_complex: tensor = paddle.as_real(tensor) if in_dygraph_mode(): group = _get_default_group() if group is None else group if len(tensor_list) == 0: tensor_shape = list(tensor.shape) tensor_shape[0] *= group.nranks out = paddle.empty(tensor_shape, tensor.dtype) else: out = paddle.concat(tensor_list, axis=0) task = group.process_group.all_gather(tensor, out) task.wait() tensor_list.clear() list_of_tensor = paddle.split(out, group.nranks, 0) if is_input_complex: tensor_list.extend(convert_to_complex(list_of_tensor)) else: tensor_list.extend(list_of_tensor) return use_calc_stream = sync_op ring_id = 0 if group is None else group.id nranks = _get_global_group().nranks if group is None else group.nranks if _non_static_mode(): out = _legacy_C_ops.c_allgather(tensor, 'use_calc_stream', use_calc_stream, 'ring_id', ring_id, 'nranks', nranks) else: op_type = 'c_allgather' helper = LayerHelper(op_type, **locals()) out = helper.create_variable_for_type_inference(dtype=tensor.dtype) if not isinstance(tensor_list, list): raise ValueError("The type of 'tensor_list' for all_gather " "should be list.") for elem in tensor_list: check_variable_and_dtype(elem, 'tensor_list', [ 'float16', 'float32', 'float64', 'int32', 'int64', 'bool', 'int8', 'uint8', 'complex64', 'complex128' ], 'all_gather') check_variable_and_dtype(tensor, 'tensor', [ 'float16', 'float32', 'float64', 'int32', 'int64', 'bool', 'int8', 'uint8', 'complex64', 'complex128' ], 'all_gather') helper.append_op(type=op_type, inputs={'X': [tensor]}, outputs={'Out': [out]}, attrs={ 'ring_id': ring_id, 'use_calc_stream': use_calc_stream, 'nranks': nranks }) list_of_tensor = paddle.split(out, nranks, 0) if is_input_complex: tensor_list.extend(convert_to_complex(list_of_tensor)) else: tensor_list.extend(list_of_tensor) def _convert_object_to_tensor(obj): _pickler = pickle.Pickler f = io.BytesIO() _pickler(f).dump(obj) data = np.frombuffer(f.getvalue(), dtype=np.uint8) tensor = paddle.to_tensor(data) return tensor, tensor.numel() def _convert_tensor_to_object(tensor, len_of_tensor): _unpickler = pickle.Unpickler return _unpickler(io.BytesIO(tensor.numpy()[:len_of_tensor])).load() def all_gather_object(object_list, obj, group=None): """ Gather picklable objects from all participators and all get the result. Similiar to all_gather(), but python object can be passed in. Args: object_list (list): A list of output object. The datatype of every element in the list is same as the input obj. obj (Any): The picklable object to send. group (Group): The group instance return by new_group or None for global default group. Returns: None. Warning: This API only supports the dygraph mode. Examples: .. code-block:: python # required: distributed import paddle import paddle.distributed as dist dist.init_parallel_env() object_list = [] if dist.get_rank() == 0: obj = {"foo": [1, 2, 3]} else: obj = {"bar": [4, 5, 6]} dist.all_gather_object(object_list, obj) print(object_list) # [{'foo': [1, 2, 3]}, {'bar': [4, 5, 6]}] (2 GPUs) """ assert in_dygraph_mode( ), "all_gather_object doesn't support static graph mode." tensor, len_of_tensor = _convert_object_to_tensor(obj) # gather len_of_tensor from all ranks list_len_of_tensor = [] all_gather(list_len_of_tensor, len_of_tensor, group) # get the max length from list max_len_of_tensor = int(max(list_len_of_tensor).item()) # resize the input tensor to max length avoid hang in all gather # Note(liyurui): Maybe we should support various length all_gather? # Now this operation is efficient for we don't support resize in python. numpy_data = tensor.numpy() numpy_data = np.resize(numpy_data, [max_len_of_tensor]) input_tensor = paddle.to_tensor(numpy_data) tensor_list = [] all_gather(tensor_list, input_tensor, group) for i, tensor in enumerate(tensor_list): object_list.append( _convert_tensor_to_object(tensor, list_len_of_tensor[i])) def scatter(tensor, tensor_list=None, src=0, group=None, sync_op=True): """ Scatter a tensor to all participators. As shown below, one process is started with a GPU and the source of the scatter is GPU0. Through scatter operator, the data in GPU0 will be sent to all GPUs averagely. .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/scatter.png :width: 800 :alt: scatter :align: center Args: tensor (Tensor): The output Tensor. Its data type should be float16, float32, float64, int32, int64, int8, uint8 or bool. tensor_list (list|tuple): A list/tuple of Tensors to scatter. Every element in the list must be a Tensor whose data type should be float16, float32, float64, int32, int64, int8, uint8 or bool. Default value is None. src (int): The source rank id. Default value is 0. group (Group, optional): The group instance return by new_group or None for global default group. sync_op (bool, optional): Whether this op is a sync op. The default value is True. Returns: None. Examples: .. code-block:: python # required: distributed import paddle import paddle.distributed as dist dist.init_parallel_env() if dist.get_rank() == 0: data1 = paddle.to_tensor([7, 8, 9]) data2 = paddle.to_tensor([10, 11, 12]) dist.scatter(data1, src=1) else: data1 = paddle.to_tensor([1, 2, 3]) data2 = paddle.to_tensor([4, 5, 6]) dist.scatter(data1, tensor_list=[data1, data2], src=1) print(data1, data2) # [1, 2, 3] [10, 11, 12] (2 GPUs, out for rank 0) # [4, 5, 6] [4, 5, 6] (2 GPUs, out for rank 1) """ if group is not None and not group.is_member(): return if not isinstance(src, int): raise ValueError("src should be int.") if in_dygraph_mode(): group = _get_default_group() if group is None else group gsrc = group.get_group_rank(src) rank = group.rank nranks = group.nranks else: ring_id = 0 if group is None else group.id gsrc = src if group is None else group.get_group_rank(src) rank = _get_global_group().rank if group is None else group.rank nranks = _get_global_group().nranks if group is None else group.nranks assert gsrc >= 0, ("src rank out of group, need global rank") if rank != gsrc: tensor_list = [] for _ in range(nranks): tensor_list.append(tensor) temp = paddle.concat(tensor_list, axis=0) if in_dygraph_mode(): task = group.process_group.scatter(temp, tensor, gsrc) if sync_op: task.wait() return None else: return task use_calc_stream = sync_op if _non_static_mode(): return _legacy_C_ops.c_scatter(temp, tensor, 'use_calc_stream', use_calc_stream, 'ring_id', ring_id, 'nranks', nranks, 'root', gsrc) op_type = 'c_scatter' check_variable_and_dtype(tensor, 'tensor', [ 'float16', 'float32', 'float64', 'int32', 'int64', 'int8', 'uint8', 'bool' ], 'scatter') helper = LayerHelper(op_type, **locals()) helper.append_op(type=op_type, inputs={'X': [temp]}, outputs={'Out': [tensor]}, attrs={ 'ring_id': ring_id, 'root': gsrc, 'use_calc_stream': use_calc_stream, 'nranks': nranks, }) def alltoall(in_tensor_list, out_tensor_list, group=None, sync_op=True): """ Scatter tensors in in_tensor_list to all participators averagely and gather the result tensors in out_tensor_list. As shown below, the in_tensor_list in GPU0 includes 0_0 and 0_1, and GPU1 includes 1_0 and 1_1. Through alltoall operator, the 0_0 in GPU0 will be sent to GPU0 and 0_1 to GPU1, 1_0 in GPU1 sent to GPU0 and 1_1 to GPU1. Finally the out_tensor_list in GPU0 includes 0_0 and 1_0, and GPU1 includes 0_1 and 1_1. .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/alltoall.png :width: 800 :alt: alltoall :align: center Args: in_tensor_list (list): A list of input Tensors. Every element in the list must be a Tensor whose data type should be float16, float32, float64, int32, int64, int8, uint8 or bool. out_tensor_list (list): A list of output Tensors. The data type of its elements should be the same as the data type of the input Tensors. group (Group, optional): The group instance return by new_group or None for global default group. Default: None. sync_op (bool, optional): Whether this op is a sync op. The default value is True. Returns: None. Examples: .. code-block:: python # required: distributed import paddle import paddle.distributed as dist dist.init_parallel_env() out_tensor_list = [] if dist.get_rank() == 0: data1 = paddle.to_tensor([[1, 2, 3], [4, 5, 6]]) data2 = paddle.to_tensor([[7, 8, 9], [10, 11, 12]]) else: data1 = paddle.to_tensor([[13, 14, 15], [16, 17, 18]]) data2 = paddle.to_tensor([[19, 20, 21], [22, 23, 24]]) dist.alltoall([data1, data2], out_tensor_list) print(out_tensor_list) # [[[1, 2, 3], [4, 5, 6]], [[13, 14, 15], [16, 17, 18]]] (2 GPUs, out for rank 0) # [[[7, 8, 9], [10, 11, 12]], [[19, 20, 21], [22, 23, 24]]] (2 GPUs, out for rank 1) """ if group is not None and not group.is_member(): return if in_dygraph_mode(): group = _get_default_group() if group is None else group backend = _group_map_backend[group] assert backend != 'gloo', ("backend gloo is not supported yet") else: ring_id = 0 if group is None else group.id temp = paddle.concat(in_tensor_list, axis=0) nranks = len(in_tensor_list) if in_dygraph_mode(): if len(out_tensor_list) == 0: tensor_shape = list(in_tensor_list[0].shape) tensor_shape[0] *= nranks out = paddle.empty(tensor_shape, in_tensor_list[0].dtype) else: out = paddle.concat(out_tensor_list, axis=0) task = group.process_group.alltoall(temp, out) task.wait() out_tensor_list.clear() out_tensor_list.extend(paddle.split(out, nranks, 0)) return use_calc_stream = sync_op if _non_static_mode(): out = _legacy_C_ops.alltoall(temp, 'use_calc_stream', use_calc_stream, 'ring_id', ring_id) else: op_type = 'alltoall' helper = LayerHelper(op_type, **locals()) out = helper.create_variable_for_type_inference( dtype=in_tensor_list[0].dtype) if not isinstance(in_tensor_list, list): raise ValueError("The type of 'in_tensor_list' for all_to_all " "should be list.") for elem in in_tensor_list: check_variable_and_dtype( elem, 'in_tensor_list', ['float16', 'float32', 'float64', 'int32', 'int64'], 'all_to_all') if not isinstance(out_tensor_list, list): raise ValueError("The type of 'out_tensor_list' for all_to_all " "should be list.") if len(out_tensor_list) != 0: raise ValueError("The 'out_tensor_list' for all_to_all " "must be an empty list.") helper.append_op(type=op_type, inputs={'X': [temp]}, outputs={'Out': [out]}, attrs={ 'ring_id': ring_id, 'use_calc_stream': use_calc_stream, }) out_tensor_list.extend(paddle.split(out, nranks, 0)) def alltoall_single(in_tensor, out_tensor, in_split_sizes=None, out_split_sizes=None, group=None, sync_op=True): """ Scatter a single input tensor to all participators and gather the received tensors in out_tensor. .. note:: ``alltoall_single`` is only supported in eager mode. Args: in_tensor (Tensor): Input tensor. The data type should be float16, float32, float64, int32, int64, int8, uint8 or bool. out_tensor (Tensor): Output Tensor. The data type should be the same as the data type of the input Tensor. in_split_sizes (list[int], optional): Split sizes of ``in_tensor`` for dim[0]. If not given, dim[0] of ``in_tensor`` must be divisible by group size and ``in_tensor`` will be scattered averagely to all participators. Default: None. out_split_sizes (list[int], optional): Split sizes of ``out_tensor`` for dim[0]. If not given, dim[0] of ``out_tensor`` must be divisible by group size and ``out_tensor`` will be gathered averagely from all participators. Default: None. group (Group, optional): The group instance return by ``new_group`` or None for global default group. Default: None. sync_op (bool, optional): Whether this op is a sync op. The default value is True. Returns: None, if ``sync_op`` is set to ``True``; ``Task`` of ``group``, if ``sync_op`` is set to ``False``. Examples: .. code-block:: python # required: distributed import paddle import paddle.distributed as dist dist.init_parallel_env() rank = dist.get_rank() size = dist.get_world_size() # case 1 (2 GPUs) data = paddle.arange(2, dtype='int64') + rank * 2 # data for rank 0: [0, 1] # data for rank 1: [2, 3] output = paddle.empty([2], dtype='int64') dist.alltoall_single(data, output) print(output) # output for rank 0: [0, 2] # output for rank 1: [1, 3] # case 2 (2 GPUs) in_split_sizes = [i + 1 for i in range(size)] # in_split_sizes for rank 0: [1, 2] # in_split_sizes for rank 1: [1, 2] out_split_sizes = [rank + 1 for i in range(size)] # out_split_sizes for rank 0: [1, 1] # out_split_sizes for rank 1: [2, 2] data = paddle.ones([sum(in_split_sizes), size], dtype='float32') * rank # data for rank 0: [[0., 0.], [0., 0.], [0., 0.]] # data for rank 1: [[1., 1.], [1., 1.], [1., 1.]] output = paddle.empty([(rank + 1) * size, size], dtype='float32') group = dist.new_group([0, 1]) task = dist.alltoall_single(data, output, in_split_sizes, out_split_sizes, sync_op=False, group=group) task.wait() print(output) # output for rank 0: [[0., 0.], [1., 1.]] # output for rank 1: [[0., 0.], [0., 0.], [1., 1.], [1., 1.]] """ if group is not None and not group.is_member(): return assert in_dygraph_mode(), "Only suppport alltoall_single in eager mode." # _check_single_tensor group = _get_default_group() if group is None else group backend = _group_map_backend[group] assert backend != 'gloo', ("backend gloo is not supported yet") in_split_sizes = [] if in_split_sizes is None else in_split_sizes out_split_sizes = [] if out_split_sizes is None else out_split_sizes task = group.process_group.alltoall_single(in_tensor, out_tensor, in_split_sizes, out_split_sizes) if sync_op: task.wait() return else: return task def _get_group_rank(global_rank, group=None): return global_rank if group is None else group.get_group_rank(global_rank) def send(tensor, dst=0, group=None, sync_op=True): """ Send a tensor to the receiver. Args: tensor (Tensor): The Tensor to send. Its data type should be float16, float32, float64, int32, int64, int8, uint8 or bool. dst (int): The destination rank id. group (Group, optional): The group instance return by new_group or None for global default group. Default: None. sync_op (bool, optional): Whether this op is a sync op. The default value is True. Returns: None. Examples: .. code-block:: python # required: distributed import paddle import paddle.distributed as dist dist.init_parallel_env() if dist.get_rank() == 0: data = paddle.to_tensor([7, 8, 9]) dist.send(data, dst=1) else: data = paddle.to_tensor([1, 2, 3]) dist.recv(data, src=0) print(data) # [7, 8, 9] (2 GPUs) """ if group is not None and not group.is_member(): return dst = _get_group_rank(dst, group) if in_dygraph_mode(): group = _get_default_group() if group is None else group backend = _group_map_backend[group] assert backend != 'gloo', ("backend gloo is not supported yet") task = group.process_group.send(tensor, dst) if sync_op: task.wait() return None else: return task use_calc_stream = sync_op ring_id = 0 if group is None else group.id if _non_static_mode(): return _legacy_C_ops.send_v2(tensor, 'use_calc_stream', use_calc_stream, 'ring_id', ring_id, 'peer', dst) op_type = 'send_v2' check_variable_and_dtype( tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'], 'send') helper = LayerHelper(op_type, **locals()) helper.append_op(type=op_type, inputs={'X': [tensor]}, attrs={ 'ring_id': ring_id, 'peer': dst, 'use_calc_stream': use_calc_stream, }) def recv(tensor, src=0, group=None, sync_op=True): """ Receive a tensor to the sender. Args: tensor (Tensor): The Tensor to receive. Its data type should be float16, float32, float64, int32, int64, int8, uint8 or bool. src (int): The source rank id. group (Group, optional): The group instance return by new_group or None for global default group. Default: None. sync_op (bool, optional): Whether this op is a sync op. The default value is True. Returns: None. Examples: .. code-block:: python # required: distributed import paddle import paddle.distributed as dist dist.init_parallel_env() if dist.get_rank() == 0: data = paddle.to_tensor([7, 8, 9]) dist.send(data, dst=1) else: data = paddle.to_tensor([1, 2, 3]) dist.recv(data, src=0) print(data) # [7, 8, 9] (2 GPUs) """ if group is not None and not group.is_member(): return src = _get_group_rank(src, group) if in_dygraph_mode(): group = _get_default_group() if group is None else group backend = _group_map_backend[group] assert backend != 'gloo', ("backend gloo is not supported yet") task = group.process_group.recv(tensor, src) if sync_op: task.wait() return None else: return task use_calc_stream = sync_op ring_id = 0 if group is None else group.id if _non_static_mode(): return _legacy_C_ops.recv_v2(tensor, 'use_calc_stream', use_calc_stream, 'ring_id', ring_id, 'peer', src, 'dtype', tensor.dtype, 'out_shape', tensor.shape) op_type = 'recv_v2' check_variable_and_dtype( tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'], 'recv') helper = LayerHelper(op_type, **locals()) helper.append_op(type=op_type, outputs={'Out': [tensor]}, attrs={ 'ring_id': ring_id, 'peer': src, 'out_shape': tensor.shape, 'dtype': tensor.dtype, 'use_calc_stream': use_calc_stream, }) def _check_single_tensor(tensor, tensor_name): if not isinstance(tensor, (core.eager.Tensor, paddle.Tensor)): raise RuntimeError("Invalid function argument. Expected parameter {}" "to be of type paddle.Tensor, but it's {}".format( tensor_name, type(tensor))) def _check_tensor_list(tensor_list, tensor_name): if not isinstance(tensor_list, list) or \ not all(isinstance(t, (core.eager.Tensor, paddle.Tensor)) for t in tensor_list): raise RuntimeError("Invalid function argument. Expected parameter {}" "to be of type paddle.Tensor".format(tensor_name)) def isend(tensor, dst, group=None): """ Sends a tensor asynchronously Args: tensor (Tensor): The Tensor to send. Its data type should be float16, float32, float64, int32, int64, int8, uint8 or bool. dst (int): The destination rank. group (Group, optional): The group instance return by new_group or None for global default group. Default: None. Returns: A distributed task object. Warning: This API only supports the dygraph mode. Examples: .. code-block:: python # required: distributed import paddle import paddle.distributed as dist dist.init_parallel_env() if dist.get_rank() == 0: data = paddle.to_tensor([7, 8, 9]) task = dist.isend(data, dst=1) else: data = paddle.to_tensor([1, 2, 3]) task = dist.irecv(data, src=0) task.wait() print(data) # [7, 8, 9] (2 GPUs) """ _check_single_tensor(tensor, "tensor") if group is not None and not group.is_member(): return if in_dygraph_mode(): group = _get_default_group() if group is None else group backend = _group_map_backend[group] assert backend != 'gloo', ("backend gloo is not supported yet") group_dst_rank = group.get_group_rank(dst) assert group_dst_rank >= 0, ("dst rank out of group, need global rank") return group.process_group.send(tensor, group_dst_rank) else: raise RuntimeError("Only support eager dygraph mode.") def irecv(tensor, src=None, group=None): """ Receive a tensor to the sender. Args: tensor (Tensor): The Tensor to receive. Its data type should be float16, float32, float64, int32, int64, int8, uint8 or bool. src (int): The source rank id. group (Group, optional): The group instance return by new_group or None for global default group. Default: None. Returns: A distributed task object. Warning: This API only supports the dygraph mode. Examples: .. code-block:: python # required: distributed import paddle import paddle.distributed as dist dist.init_parallel_env() if dist.get_rank() == 0: data = paddle.to_tensor([7, 8, 9]) task = dist.isend(data, dst=1) else: data = paddle.to_tensor([1, 2, 3]) task = dist.irecv(data, src=0) task.wait() print(data) # [7, 8, 9] (2 GPUs) """ _check_single_tensor(tensor, "tensor") if group is not None and not group.is_member(): return if in_dygraph_mode(): group = _get_default_group() if group is None else group backend = _group_map_backend[group] assert backend != 'gloo', ("backend gloo is not supported yet") group_src_rank = group.get_group_rank(src) assert group_src_rank >= 0, ("src rank out of group, need global rank") return group.process_group.recv(tensor, group_src_rank) else: raise RuntimeError("Only support eager dygraph mode.") class P2POp(object): """ A class that makes point-to-point operations for "batch_isend_irecv". This class creates the type of P2P operation, communication buffer, peer rank, Group. Instances of this class will be passed to ``paddle.distributed.batch_isend_irecv`` for point-to-point communication. Args: op (callable): A function to send data to or receive data from a peer process. The type of ``op`` is either ``paddle.distributed.isend`` or ``paddle.distributed.irecv``. tensor (Tensor): Tensor to send or receive. peer (int): The destination or source rank. group (Group, optional): The group instance return by new_group or None for global default group. Default: None. """ def __init__(self, op, tensor, peer, group=None): if op not in [isend, irecv]: raise RuntimeError("Invalid ``op`` function. Expected ``op`` " "to be of type ``paddle.distributed.isend`` or " "``paddle.distributed.irecv``.") _check_single_tensor(tensor, "tensor") self.op = op self.tensor = tensor self.peer = peer self.group = _get_default_group() if group is None else group @contextlib.contextmanager def _with_batch_p2p_guard(backend): if backend == "nccl": core.ProcessGroupNCCL.group_start() try: yield finally: if backend == "nccl": core.ProcessGroupNCCL.group_end() def _check_p2p_op_list(p2p_op_list): """ Helper to check that the ``p2p_op_list`` is a list of P2POp instances and all ops use the same backend. """ if not isinstance(p2p_op_list, list) or not all( isinstance(p2p_op, P2POp) for p2p_op in p2p_op_list): raise RuntimeError("Invalid ``p2p_op_list``. Each op is expected to " "to be of type ``paddle.distributed.P2POp``.") backend = _group_map_backend[p2p_op_list[0].group] if not all(backend == _group_map_backend[p2p_op.group] for p2p_op in p2p_op_list): raise RuntimeError("All groups need to use the same backend.") def batch_isend_irecv(p2p_op_list): """ Send or Receive a batch of tensors asynchronously and return a list of requests. Process each of the point-to-point operations in ``p2p_op_list`` and return the corresponding tasks. NCCL are currently supported. Args: p2p_op_list: A list of point-to-point operations(type of each operator is ``paddle.distributed.P2POp``). The order of the isend/irecv in the list matters and it needs to match with corresponding isend/irecv on the remote end. Returns: A list of distributed tasks returned by calling the corresponding op in the op_list. Warning: This API only supports the dygraph mode. Examples: .. code-block:: python # required: distributed import paddle import paddle.distributed as dist dist.init_parallel_env() rank = dist.get_rank() world_size = dist.get_world_size() send_t = paddle.arange(2) + rank # paddle.tensor([0, 1]) # Rank-0 # paddle.tensor([1, 2]) # Rank-1 recv_t = paddle.empty(shape=[2], dtype=send_t.dtype) send_op = dist.P2POp(dist.isend, send_t, (rank + 1) % world_size) recv_op = dist.P2POp(dist.irecv, recv_t, (rank - 1 + world_size) % world_size) tasks = dist.batch_isend_irecv([send_op, recv_op]) for task in tasks: task.wait() print(recv_t) # paddle.tensor([1, 2]) # Rank-0 # paddle.tensor([0, 1]) # Rank-1 """ _check_p2p_op_list(p2p_op_list) group = p2p_op_list[0].group if group is not None and not group.is_member(): return if in_dygraph_mode(): group = _get_default_group() if group is None else group backend = _group_map_backend[group] tasks = [] with _with_batch_p2p_guard(backend): for p2p_op in p2p_op_list: op = p2p_op.op tensor = p2p_op.tensor peer = p2p_op.peer comm_group = p2p_op.group task = op(tensor, peer, comm_group) if task is not None: tasks.append(task) return tasks else: raise RuntimeError("Don't support static graph mode currently.") def reduce_scatter(tensor, tensor_list, op=ReduceOp.SUM, group=None, sync_op=True): """ Reduces, then scatters a list of tensors to all processes in a group Args: tensor (Tensor): Output tensor. Its data type should be float16, float32, float64, int32, int64, int8, uint8 or bool. tensor_list (list[Tensor]): List of tensors to reduce and scatter. Every element in the list must be a Tensor whose data type should be float16, float32, float64, int32, int64, int8, uint8 or bool. op (ReduceOp.SUM|ReduceOp.MAX|ReduceOp.MIN|ReduceOp.PROD): Optional. The operation used. Default: ReduceOp.SUM. group (Group, optional): The group instance return by new_group or None for global default group. Default: None. sync_op (bool, optional): Whether this op is a sync op. The default value is True. Returns: Async task handle, if sync_op is set to False. None, if sync_op or if not part of the group. Warning: This API only supports the dygraph mode. Examples: .. code-block:: python # required: distributed import paddle import paddle.distributed as dist dist.init_parallel_env() if dist.get_rank() == 0: data1 = paddle.to_tensor([0, 1]) data2 = paddle.to_tensor([2, 3]) else: data1 = paddle.to_tensor([4, 5]) data2 = paddle.to_tensor([6, 7]) dist.reduce_scatter(data1, [data1, data2]) print(data1) # [4, 6] (2 GPUs, out for rank 0) # [8, 10] (2 GPUs, out for rank 1) """ _check_single_tensor(tensor, "tensor") _check_tensor_list(tensor_list, "tensor_list") if group is not None and not group.is_member(): return if in_dygraph_mode(): op_type = _get_reduce_op(op, "reduce_scatter") group = _get_default_group() if group is None else group backend = _group_map_backend[group] assert backend != 'gloo', ("backend gloo is not supported yet") temp = paddle.concat(tensor_list, axis=0) task = group.process_group._reduce_scatter_base(tensor, temp, op_type) if sync_op: task.wait() return None else: return task else: raise RuntimeError("Don't support static graph mode currently.") def _reduce_scatter_base(output, input, op=ReduceOp.SUM, group=None, sync_op=True): """ Reduces, then scatters a flattened tensor to all processes in a group. Args: output (Tensor): Output tensor. Its data type should be float16, float32, float64, int32, int64, int8, uint8 or bool. input (Tensor): Input tensor that is of size output tensor size times world size. Its data type should be float16, float32, float64, int32, int64, int8, uint8 or bool. op (ReduceOp.SUM|ReduceOp.MAX|ReduceOp.MIN|ReduceOp.PROD): Optional. The operation used. Default: ReduceOp.SUM. group (ProcessGroup, optional): The process group to work on. If None, the default process group will be used. sync_op (bool, optional): Whether this op is a sync op. The default value is True. Returns: Async task handle, if sync_op is set to False. None, if sync_op or if not part of the group. Examples: .. code-block:: python # required: distributed import paddle import paddle.distributed as dist dist.init_parallel_env() rank = dist.get_rank() data = paddle.arange(4) + rank # [0, 1, 2, 3] (2 GPUs, for rank 0) # [1, 2, 3, 4] (2 GPUs, for rank 1) output = paddle.empty(shape=[2], dtype=data.dtype) dist.collective._reduce_scatter_base(output, data) print(output) # [1, 3] (2 GPUs, out for rank 0) # [5, 7] (2 GPUs, out for rank 1) """ _check_single_tensor(output, "output") _check_single_tensor(input, "input") if group is not None and not group.is_member(): return if in_dygraph_mode(): op_type = _get_reduce_op(op, "_reduce_scatter_base") group = _get_default_group() if group is None else group task = group.process_group._reduce_scatter_base(output, input, op_type) if sync_op: task.wait() return None else: return task else: raise RuntimeError("Don't support static graph mode currently.")