# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import paddle.v2.fluid as fluid import paddle.v2.fluid.core as core import numpy as np class TestNormalization(unittest.TestCase): data_desc = {"name": "input", "shape": (2, 3, 7)} def gen_random_input(self): """Generate random input data. """ self.data = np.random.random( size=self.data_desc["shape"]).astype("float32") def set_program(self, axis, epsilon): """Build the test program. """ data = fluid.layers.data( name=self.data_desc["name"], shape=self.data_desc["shape"], dtype="float32", append_batch_size=False) data.stop_gradient = False l2_norm = fluid.layers.l2_normalize(x=data, axis=axis, epsilon=epsilon) out = fluid.layers.reduce_sum(l2_norm, dim=None) fluid.backward.append_backward(loss=out) self.fetch_list = [l2_norm] def run_program(self): """Run the test program. """ places = [core.CPUPlace()] if core.is_compiled_with_cuda(): places.append(core.CUDAPlace(0)) for place in places: self.set_inputs(place) exe = fluid.Executor(place) output = exe.run(fluid.default_main_program(), feed=self.inputs, fetch_list=self.fetch_list, return_numpy=True) self.op_output = output def set_inputs(self, place): """Set the randomly generated data to the test program. """ self.inputs = {} tensor = fluid.Tensor() tensor.set(self.data, place) self.inputs[self.data_desc["name"]] = tensor def l2_normalize(self, data, axis, epsilon): """ Compute the groundtruth. """ output = data * np.reciprocal( np.sum(np.square(data), axis=axis, keepdims=True)) return output def test_l2_normalize(self): """ Test the python wrapper for l2_normalize. """ axis = 1 #TODO(caoying) epsilon is not supported due to lack of a maximum_op. epsilon = 1e-6 self.gen_random_input() self.set_program(axis, epsilon) self.run_program() expect_output = self.l2_normalize(self.data, axis, epsilon) # check output self.assertTrue(np.allclose(self.op_output, expect_output, atol=0.001)) if __name__ == '__main__': unittest.main()