# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import paddle from paddle.distributed.fleet import auto paddle.enable_static() def make_program_dp2(): main_program = paddle.fluid.Program() start_program = paddle.fluid.Program() with paddle.static.program_guard(main_program, start_program): x = paddle.static.data(name='x', shape=[4, 4, 8], dtype='float32') x.stop_gradient = False auto.shard_tensor( x, auto.ProcessMesh([0, 1], dim_names=["x"]), ["x", None, None] ) tmp_0 = paddle.reshape(x, shape=[0, 0, 4, 2]) tmp_1 = paddle.reshape(tmp_0, shape=[0, 0, 8]) tmp_2 = tmp_1.reshape((tmp_1.shape[0], tmp_1.shape[1], -1)) return main_program, start_program def parallelizer(program_func, rank): from paddle.distributed.auto_parallel.static.completion import Completer from paddle.distributed.auto_parallel.static.dist_context import ( DistributedContext, ) from paddle.distributed.auto_parallel.static.partitioner import Partitioner main_program, start_program = program_func() dist_context = DistributedContext() completer = Completer(dist_context) completer.complete_forward_annotation(main_program) dist_context.block_state.parse_forward_blocks(main_program) partitioner = Partitioner(dist_context, rank) dist_main_prog, _, _ = partitioner.partition( main_program, start_program, [] ) return dist_main_prog, dist_context class TestDistReshape(unittest.TestCase): def test_dist_reshape_mp2(self): for rank in range(2): dist_main_prog, dist_context = parallelizer(make_program_dp2, rank) ops = dist_main_prog.global_block().ops for idx, op in enumerate(ops): op_dist_attr = dist_context.get_op_dist_attr_for_program(op) assert op_dist_attr.impl_type == "reshape2" assert op_dist_attr.impl_idx == idx if op_dist_attr.impl_idx == 2: assert op.desc.attr('shape')[0] == 2 if __name__ == "__main__": unittest.main()