# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import unittest import paddle from paddle.distributed.auto_parallel.static.cluster import Cluster from paddle.distributed.auto_parallel.static.operators.common import ( get_distributed_operator_impl_container, is_elementwise_op, ) from paddle.distributed.fleet import auto from paddle.fluid import program_guard from paddle.fluid.backward import append_backward paddle.enable_static() def parallelizer(program_func, rank): from paddle.distributed.auto_parallel.static.completion import Completer from paddle.distributed.auto_parallel.static.dist_context import ( DistributedContext, ) main_program, startup_program, loss = program_func() # complete forward dist_context = DistributedContext() completer = Completer(dist_context) completer.complete_forward_annotation(main_program) dist_context.block_state.parse_forward_blocks(main_program) # generate backward and complete backward with paddle.static.program_guard(main_program, startup_program): params_grads = append_backward( loss, None, None, None, distop_context=dist_context.dist_op_context ) completer.complete_backward_annotation(main_program) dist_context.block_state.parse_backward_blocks(main_program) optimizer = paddle.optimizer.Adam(learning_rate=0.001) # generate opt and complete opt with program_guard(main_program, startup_program): optimize_ops = copy.deepcopy(optimizer).apply_gradients(params_grads) completer.complete_update_annotation(main_program) return main_program, dist_context class TestDistOpCost(unittest.TestCase): def test_dist_op_cost_part1(self): def make_program(): main_program = paddle.static.Program() start_program = paddle.static.Program() with paddle.static.program_guard(main_program, start_program): x = paddle.static.data(name='x', shape=[4, 8], dtype='float32') x.stop_gradient = True label = paddle.static.data( name="label", shape=[4, 1], dtype='float32' ) label.stop_gradient = True auto.shard_tensor( x, auto.ProcessMesh([0, 1], dim_names=["x"]), ["x", None] ) tmp = paddle.fluid.layers.fill_constant_batch_size_like( input=x, shape=[2, 8], value=1, dtype='float32' ) weight_attr = paddle.ParamAttr() linear = paddle.nn.Linear(8, 1, weight_attr=weight_attr) linear_out = linear(x) gelu_out = paddle.nn.functional.gelu(linear_out) # default op with dp tmp = paddle.static.nn.layer_norm(gelu_out) error_cost = paddle.nn.functional.square_error_cost(tmp, label) loss = paddle.mean(error_cost) return main_program, start_program, loss main_program, dist_context = parallelizer(make_program, 0) ops = main_program.global_block().ops cluster = Cluster() cluster.gen_default_config_cluster(device_count=2) for idx, op in enumerate(ops): if ( op.type != "matmul_v2" and op.type != "matmul_v2_grad" and op.type != "sgd" ): dist_op = dist_context.get_dist_op_for_program(op) op_dist_attr = dist_op.dist_attr processes = op_dist_attr.process_mesh.process_ids if is_elementwise_op(op.type): container = get_distributed_operator_impl_container( "elementwise" ) else: container = get_distributed_operator_impl_container( op_dist_attr.impl_type ) dist_impl = container.impls[op_dist_attr.impl_idx] dist_op_cost = dist_impl.calc_cost( op.attr('op_role'), dist_op, dist_context, cluster ) self.assertTrue(dist_op_cost) def test_dist_op_cost_part2(self): def make_program(): main_program = paddle.static.Program() start_program = paddle.static.Program() with paddle.static.program_guard(main_program, start_program): x = paddle.static.data(name='x', shape=[4], dtype='float32') x.stop_gradient = True label = paddle.static.data( name="label", shape=[8, 1], dtype='float32' ) label.stop_gradient = True auto.shard_tensor( x, auto.ProcessMesh([0, 1], dim_names=["x"]), ["x"] ) auto.shard_tensor( label, auto.ProcessMesh([0, 1], dim_names=["x"]), ["x", None], ) # embedding tmp = paddle.fluid.layers.fill_constant_batch_size_like( input=x, shape=[4], value=1, dtype='int32' ) embedding = paddle.nn.Embedding(10, 8) out = embedding(tmp) # row parallel embedding for op in main_program.global_block().ops: if op.type == "lookup_table_v2": W = main_program.global_block().vars[op.input("W")[0]] auto.shard_tensor( W, auto.ProcessMesh([0, 1], dim_names=["x"]), ["x", None], ) out = paddle.transpose(out, [1, 0]) # [8, 2] [-1, 0] # matmul param1 = paddle.create_parameter( [4, 8], paddle.float32 ) # [2, 8] [0, -1] auto.shard_tensor( param1, auto.ProcessMesh([0, 1], dim_names=["x"]), ["x", None], ) param2 = paddle.create_parameter( [8, 8], paddle.float32 ) # [8, 4] [-1, 0] auto.shard_tensor( param2, auto.ProcessMesh([0, 1], dim_names=["x"]), [None, "x"], ) out1 = paddle.matmul(out, param1) # [8, 8] [-1, -1] tmp_param = paddle.create_parameter( [8, 8], paddle.float32 ) # [8, 8] [-1, -1] auto.shard_tensor( param2, auto.ProcessMesh([0, 1], dim_names=["x"]), [None, None], ) tmp_out = paddle.matmul(out1, tmp_param) tmp_out = paddle.scale(tmp_out, 0.5) out2 = paddle.matmul(tmp_out, param2) # [8, 4] [-1, 0] out8 = paddle.transpose(out2, [1, 0]) # [4, 8] [0, -1] # reshape out9 = paddle.reshape(out8, [8, 2, 4]) # [4, 2, 4] [0, -1, -1] tmp_reshape_out = paddle.reshape(out9, [8, 4, 2]) out10 = paddle.reshape( tmp_reshape_out, [8, 8] ) # [4, 8] [0, -1] # softmax softmax = paddle.nn.Softmax() out11 = softmax(out10) error_cost = paddle.nn.functional.square_error_cost( out11, label ) loss = paddle.mean(error_cost) return main_program, start_program, loss main_program, dist_context = parallelizer(make_program, 0) ops = main_program.global_block().ops cluster = Cluster() cluster.gen_default_config_cluster(device_count=2) for idx, op in enumerate(ops): dist_op = dist_context.get_dist_op_for_program(op) op_dist_attr = dist_op.dist_attr processes = op_dist_attr.process_mesh.process_ids if is_elementwise_op(op.type): container = get_distributed_operator_impl_container( "elementwise" ) else: container = get_distributed_operator_impl_container( op_dist_attr.impl_type ) dist_impl = container.impls[op_dist_attr.impl_idx] dist_op_cost = dist_impl.calc_cost( op.attr('op_role'), dist_op, dist_context, cluster ) self.assertTrue(dist_op_cost) def test_dist_op_cost_part3(self): def make_program(): main_program = paddle.static.Program() start_program = paddle.static.Program() with paddle.static.program_guard(main_program, start_program): x = paddle.static.data(name='x', shape=[4], dtype='float32') x.stop_gradient = True label = paddle.static.data( name="label", shape=[8, 1], dtype='float32' ) label.stop_gradient = True auto.shard_tensor( x, auto.ProcessMesh([0, 1], dim_names=["x"]), ["x"] ) auto.shard_tensor( label, auto.ProcessMesh([0, 1], dim_names=["x"]), ["x", None], ) # embedding tmp = paddle.fluid.layers.fill_constant_batch_size_like( input=x, shape=[4], value=1, dtype='int32' ) embedding = paddle.nn.Embedding(10, 8) out = embedding(tmp) # row parallel embedding for op in main_program.global_block().ops: if op.type == "lookup_table_v2": W = main_program.global_block().vars[op.input("W")[0]] auto.shard_tensor( W, auto.ProcessMesh([0, 1], dim_names=["x"]), ["x", None], ) out = paddle.transpose(out, [1, 0]) # [8, 2] [-1, 0] # matmul_v2 param1 = paddle.create_parameter( [4, 8], paddle.float32 ) # [2, 8] [0, -1] auto.shard_tensor( param1, auto.ProcessMesh([0, 1], dim_names=["x"]), ["x", None], ) param2 = paddle.create_parameter( [8, 8], paddle.float32 ) # [8, 4] [-1, 0] auto.shard_tensor( param2, auto.ProcessMesh([0, 1], dim_names=["x"]), [None, "x"], ) out1 = paddle.matmul(out, param1) # [8, 8] [-1, -1] tmp_param = paddle.create_parameter( [8, 8], paddle.float32 ) # [8, 8] [-1, -1] auto.shard_tensor( param2, auto.ProcessMesh([0, 1], dim_names=["x"]), [None, None], ) tmp_out = paddle.matmul(out1, tmp_param) tmp_out = paddle.scale(tmp_out, 0.5) out2 = paddle.matmul(tmp_out, param2) # [8, 4] [-1, 0] out8 = paddle.transpose(out2, [1, 0]) # [4, 8] [0, -1] # reshape out9 = paddle.reshape(out8, [8, 2, 4]) # [4, 2, 4] [0, -1, -1] tmp_reshape_out = paddle.reshape(out9, [8, 4, 2]) out10 = paddle.reshape( tmp_reshape_out, [8, 8] ) # [4, 8] [0, -1] # softmax softmax = paddle.nn.Softmax() out11 = softmax(out10) error_cost = paddle.nn.functional.square_error_cost( out11, label ) loss = paddle.mean(error_cost) return main_program, start_program, loss main_program, dist_context = parallelizer(make_program, 0) ops = main_program.global_block().ops cluster = Cluster() cluster.gen_default_config_cluster(device_count=2) for idx, op in enumerate(ops): dist_op = dist_context.get_dist_op_for_program(op) op_dist_attr = dist_op.dist_attr processes = op_dist_attr.process_mesh.process_ids if is_elementwise_op(op.type): container = get_distributed_operator_impl_container( "elementwise" ) else: container = get_distributed_operator_impl_container( op_dist_attr.impl_type ) dist_impl = container.impls[op_dist_attr.impl_idx] dist_op_cost = dist_impl.calc_cost( op.attr('op_role'), dist_op, dist_context, cluster ) self.assertTrue(dist_op_cost) def test_dist_op_cost_part4(self): def make_program(): main_program = paddle.static.Program() start_program = paddle.static.Program() with paddle.static.program_guard(main_program, start_program): x = paddle.static.data(name='x', shape=[4], dtype='float32') x.stop_gradient = True label = paddle.static.data( name="label", shape=[8, 1], dtype='float32' ) label.stop_gradient = True auto.shard_tensor( x, auto.ProcessMesh([0, 1], dim_names=["x"]), ["x"] ) auto.shard_tensor( label, auto.ProcessMesh([0, 1], dim_names=["x"]), ["x", None], ) # embedding tmp = paddle.fluid.layers.fill_constant_batch_size_like( input=x, shape=[4], value=1, dtype='int32' ) embedding = paddle.nn.Embedding(10, 8) out = embedding(tmp) # row parallel embedding for op in main_program.global_block().ops: if op.type == "lookup_table_v2": W = main_program.global_block().vars[op.input("W")[0]] auto.shard_tensor( W, auto.ProcessMesh([0, 1], dim_names=["x"]), ["x", None], ) out = paddle.transpose(out, [1, 0]) # [8, 2] [-1, 0] # mul param1 = paddle.create_parameter( [4, 8], paddle.float32 ) # [2, 8] [0, -1] auto.shard_tensor( param1, auto.ProcessMesh([0, 1], dim_names=["x"]), ["x", None], ) param2 = paddle.create_parameter( [8, 8], paddle.float32 ) # [8, 4] [-1, 0] auto.shard_tensor( param2, auto.ProcessMesh([0, 1], dim_names=["x"]), [None, "x"], ) out1 = paddle.matmul(out, param1) # [8, 8] [-1, -1] tmp_param = paddle.create_parameter( [8, 8], paddle.float32 ) # [8, 8] [-1, -1] auto.shard_tensor( param2, auto.ProcessMesh([0, 1], dim_names=["x"]), [None, None], ) tmp_out = paddle.matmul(out1, tmp_param) out2 = paddle.matmul(tmp_out, param2) # [8, 4] [-1, 0] out8 = paddle.transpose(out2, [1, 0]) # [4, 8] [0, -1] # reshape out9 = paddle.reshape(out8, [8, 2, 4]) # [4, 2, 4] [0, -1, -1] tmp_reshape_out = paddle.reshape(out9, [8, 4, 2]) out10 = paddle.reshape( tmp_reshape_out, [8, 8] ) # [4, 8] [0, -1] # softmax softmax = paddle.nn.Softmax() out11 = softmax(out10) error_cost = paddle.nn.functional.square_error_cost( out11, label ) loss = paddle.mean(error_cost) return main_program, start_program, loss main_program, dist_context = parallelizer(make_program, 0) ops = main_program.global_block().ops cluster = Cluster() cluster.gen_default_config_cluster(device_count=2) for idx, op in enumerate(ops): dist_op = dist_context.get_dist_op_for_program(op) op_dist_attr = dist_op.dist_attr processes = op_dist_attr.process_mesh.process_ids if is_elementwise_op(op.type): container = get_distributed_operator_impl_container( "elementwise" ) else: container = get_distributed_operator_impl_container( op_dist_attr.impl_type ) dist_impl = container.impls[op_dist_attr.impl_idx] dist_op_cost = dist_impl.calc_cost( op.attr('op_role'), dist_op, dist_context, cluster ) self.assertTrue(dist_op_cost) if __name__ == "__main__": unittest.main()