#include #include "adagrad_optimizer.h" namespace paddle { namespace optimizer { void AdagradOptimizer::Update(const Tensor* gradient) { num_sample_passed_ += 1; double learning_rate = lr_policy_->LearningRate(num_sample_passed_); Tensor& param = *parameter_; Tensor& accum_g = *accum_gradient_; const Tensor& grad = *gradient; for (size_t i = 0; i < param.size(); ++i) { accum_g[i] += grad[i] * grad[i]; param[i] += learning_rate * grad[i] / std::sqrt(accum_g[i] + epsilon_) + learning_rate * decay_ * param[i]; } } const char* AdagradOptimizer::SerializeState(int* state_len) { AdagradOptimizerState state; // TODO(zhihong) : add lr_policy serialization state.set_num_sample_passed(num_sample_passed_); TensorToProto(*parameter_, state.mutable_parameter()); TensorToProto(*accum_gradient_, state.mutable_accum_gradient()); auto str = state.SerializeAsString(); *state_len = str.size(); return str.c_str(); } void AdagradOptimizer::DeserializeState(const std::string& str) { AdagradOptimizerState state; state.ParseFromString(str); // TODO(zhihong) : add lr_policy DeserializeState num_sample_passed_ = state.num_sample_passed(); ProtoToTensor(state.parameter(), parameter_); ProtoToTensor(state.accum_gradient(), accum_gradient_); } } // namespace optimizer } // namespace paddle