# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. from __future__ import print_function import unittest import numpy as np import copy from op_test import OpTest def iou(box_a, box_b): """Apply intersection-over-union overlap between box_a and box_b """ xmin_a = min(box_a[0], box_a[2]) ymin_a = min(box_a[1], box_a[3]) xmax_a = max(box_a[0], box_a[2]) ymax_a = max(box_a[1], box_a[3]) xmin_b = min(box_b[0], box_b[2]) ymin_b = min(box_b[1], box_b[3]) xmax_b = max(box_b[0], box_b[2]) ymax_b = max(box_b[1], box_b[3]) area_a = (ymax_a - ymin_a) * (xmax_a - xmin_a) area_b = (ymax_b - ymin_b) * (xmax_b - xmin_b) if area_a <= 0 and area_b <= 0: return 0.0 xa = max(xmin_a, xmin_b) ya = max(ymin_a, ymin_b) xb = min(xmax_a, xmax_b) yb = min(ymax_a, ymax_b) inter_area = max(xb - xa, 0.0) * max(yb - ya, 0.0) box_a_area = (box_a[2] - box_a[0]) * (box_a[3] - box_a[1]) box_b_area = (box_b[2] - box_b[0]) * (box_b[3] - box_b[1]) iou_ratio = inter_area / (area_a + area_b - inter_area) return iou_ratio def nms(boxes, scores, score_threshold, nms_threshold, top_k=200, eta=1.0): """Apply non-maximum suppression at test time to avoid detecting too many overlapping bounding boxes for a given object. Args: boxes: (tensor) The location preds for the img, Shape: [num_priors,4]. scores: (tensor) The class predscores for the img, Shape:[num_priors]. score_threshold: (float) The confidence thresh for filtering low confidence boxes. nms_threshold: (float) The overlap thresh for suppressing unnecessary boxes. top_k: (int) The maximum number of box preds to consider. eta: (float) The parameter for adaptive NMS. Return: The indices of the kept boxes with respect to num_priors. """ all_scores = copy.deepcopy(scores) all_scores = all_scores.flatten() selected_indices = np.argwhere(all_scores > score_threshold) selected_indices = selected_indices.flatten() all_scores = all_scores[selected_indices] sorted_indices = np.argsort(-all_scores, axis=0, kind='mergesort') sorted_scores = all_scores[sorted_indices] if top_k > -1 and top_k < sorted_indices.shape[0]: sorted_indices = sorted_indices[:top_k] sorted_scores = sorted_scores[:top_k] selected_indices = [] adaptive_threshold = nms_threshold for i in range(sorted_scores.shape[0]): idx = sorted_indices[i] keep = True for k in range(len(selected_indices)): if keep: kept_idx = selected_indices[k] overlap = iou(boxes[idx], boxes[kept_idx]) keep = True if overlap <= adaptive_threshold else False else: break if keep: selected_indices.append(idx) if keep and eta < 1 and adaptive_threshold > 0.5: adaptive_threshold *= eta return selected_indices def multiclass_nms(boxes, scores, background, score_threshold, nms_threshold, nms_top_k, keep_top_k): class_num = scores.shape[0] priorbox_num = scores.shape[1] selected_indices = {} num_det = 0 for c in range(class_num): if c == background: continue indices = nms(boxes, scores[c], score_threshold, nms_threshold, nms_top_k) selected_indices[c] = indices num_det += len(indices) if keep_top_k > -1 and num_det > keep_top_k: score_index = [] for c, indices in selected_indices.items(): for idx in indices: score_index.append((scores[c][idx], c, idx)) sorted_score_index = sorted( score_index, key=lambda tup: tup[0], reverse=True) sorted_score_index = sorted_score_index[:keep_top_k] selected_indices = {} for _, c, _ in sorted_score_index: selected_indices[c] = [] for s, c, idx in sorted_score_index: selected_indices[c].append(idx) num_det = keep_top_k return selected_indices, num_det def batched_multiclass_nms(boxes, scores, background, score_threshold, nms_threshold, nms_top_k, keep_top_k): batch_size = scores.shape[0] det_outs = [] lod = [] for n in range(batch_size): nmsed_outs, nmsed_num = multiclass_nms(boxes[n], scores[n], background, score_threshold, nms_threshold, nms_top_k, keep_top_k) lod.append(nmsed_num) if nmsed_num == 0: continue tmp_det_out = [] for c, indices in nmsed_outs.items(): for idx in indices: xmin, ymin, xmax, ymax = boxes[n][idx][:] tmp_det_out.append( [c, scores[n][c][idx], xmin, ymin, xmax, ymax]) sorted_det_out = sorted( tmp_det_out, key=lambda tup: tup[0], reverse=False) det_outs.extend(sorted_det_out) return det_outs, lod class TestMulticlassNMSOp(OpTest): def set_argument(self): self.score_threshold = 0.01 def setUp(self): self.set_argument() N = 7 M = 1200 C = 21 BOX_SIZE = 4 background = 0 nms_threshold = 0.3 nms_top_k = 400 keep_top_k = 200 score_threshold = self.score_threshold scores = np.random.random((N * M, C)).astype('float32') def softmax(x): shiftx = x - np.max(x).clip(-64.) exps = np.exp(shiftx) return exps / np.sum(exps) scores = np.apply_along_axis(softmax, 1, scores) scores = np.reshape(scores, (N, M, C)) scores = np.transpose(scores, (0, 2, 1)) boxes = np.random.random((N, M, BOX_SIZE)).astype('float32') boxes[:, :, 0:2] = boxes[:, :, 0:2] * 0.5 boxes[:, :, 2:4] = boxes[:, :, 2:4] * 0.5 + 0.5 nmsed_outs, lod = batched_multiclass_nms(boxes, scores, background, score_threshold, nms_threshold, nms_top_k, keep_top_k) nmsed_outs = [-1] if not nmsed_outs else nmsed_outs nmsed_outs = np.array(nmsed_outs).astype('float32') self.op_type = 'multiclass_nms' self.inputs = {'BBoxes': boxes, 'Scores': scores} self.outputs = {'Out': (nmsed_outs, [lod])} self.attrs = { 'background_label': 0, 'nms_threshold': nms_threshold, 'nms_top_k': nms_top_k, 'keep_top_k': keep_top_k, 'score_threshold': score_threshold, 'nms_eta': 1.0, } def test_check_output(self): self.check_output() class TestMulticlassNMSOpNoOutput(TestMulticlassNMSOp): def set_argument(self): # Here set 2.0 to test the case there is no outputs. # In practical use, 0.0 < score_threshold < 1.0 self.score_threshold = 2.0 class TestIOU(unittest.TestCase): def test_iou(self): box1 = np.array([4.0, 3.0, 7.0, 5.0]).astype('float32') box2 = np.array([3.0, 4.0, 6.0, 8.0]).astype('float32') expt_output = np.array([2.0 / 16.0]).astype('float32') calc_output = np.array([iou(box1, box2)]).astype('float32') self.assertTrue(np.allclose(calc_output, expt_output)) if __name__ == '__main__': unittest.main()