import numpy as np import paddle.v2 as paddle import paddle.v2.dataset.conll05 as conll05 import paddle.v2.fluid.core as core import paddle.v2.fluid.framework as framework import paddle.v2.fluid.layers as layers from paddle.v2.fluid.executor import Executor, g_scope from paddle.v2.fluid.optimizer import SGDOptimizer import paddle.v2.fluid as fluid import paddle.v2.fluid.layers as pd dict_size = 30000 source_dict_dim = target_dict_dim = dict_size src_dict, trg_dict = paddle.dataset.wmt14.get_dict(dict_size) hidden_dim = 512 word_dim = 512 IS_SPARSE = True batch_size = 50 max_length = 50 topk_size = 50 trg_dic_size = 10000 src_word_id = layers.data(name="src_word_id", shape=[1], dtype='int64') src_embedding = layers.embedding( input=src_word_id, size=[dict_size, word_dim], dtype='float32', is_sparse=IS_SPARSE, param_attr=fluid.ParamAttr(name='vemb')) def encoder(): lstm_hidden0, lstm_0 = layers.dynamic_lstm( input=src_embedding, size=hidden_dim, candidate_activation='sigmoid', cell_activation='sigmoid') lstm_hidden1, lstm_1 = layers.dynamic_lstm( input=src_embedding, size=hidden_dim, candidate_activation='sigmoid', cell_activation='sigmoid', is_reverse=True) bidirect_lstm_out = layers.concat([lstm_hidden0, lstm_hidden1], axis=0) return bidirect_lstm_out def decoder_trainer(context): ''' decoder with trainer ''' pass def to_lodtensor(data, place): seq_lens = [len(seq) for seq in data] cur_len = 0 lod = [cur_len] for l in seq_lens: cur_len += l lod.append(cur_len) flattened_data = np.concatenate(data, axis=0).astype("int64") flattened_data = flattened_data.reshape([len(flattened_data), 1]) res = core.LoDTensor() res.set(flattened_data, place) res.set_lod([lod]) return res def main(): encoder_out = encoder() # TODO(jacquesqiao) call here decoder_trainer(encoder_out) train_data = paddle.batch( paddle.reader.shuffle( paddle.dataset.wmt14.train(8000), buf_size=1000), batch_size=batch_size) place = core.CPUPlace() exe = Executor(place) exe.run(framework.default_startup_program()) batch_id = 0 for pass_id in xrange(2): print 'pass_id', pass_id for data in train_data(): print 'batch', batch_id batch_id += 1 if batch_id > 10: break word_data = to_lodtensor(map(lambda x: x[0], data), place) outs = exe.run(framework.default_main_program(), feed={'src_word_id': word_data, }, fetch_list=[encoder_out]) if __name__ == '__main__': main()