# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import paddle import paddle.nn as nn import paddle.fluid as fluid import numpy as np class LeNetDygraph(fluid.dygraph.Layer): def __init__(self, num_classes=10, classifier_activation='softmax'): super(LeNetDygraph, self).__init__() self.num_classes = num_classes self.features = nn.Sequential( nn.Conv2D( 1, 6, 3, stride=1, padding=1), nn.ReLU(), nn.Pool2D(2, 'max', 2), nn.Conv2D( 6, 16, 5, stride=1, padding=0), nn.ReLU(), nn.Pool2D(2, 'max', 2)) if num_classes > 0: self.fc = nn.Sequential( nn.Linear(400, 120), nn.Linear(120, 84), nn.Linear( 84, 10, act=classifier_activation)) def forward(self, inputs): x = self.features(inputs) if self.num_classes > 0: x = fluid.layers.flatten(x, 1) x = self.fc(x) return x def init_weights(layer): if type(layer) == nn.Linear: new_weight = paddle.fill_constant( layer.weight.shape, layer.weight.dtype, value=0.9) layer.weight.set_value(new_weight) new_bias = paddle.fill_constant( layer.bias.shape, layer.bias.dtype, value=-0.1) layer.bias.set_value(new_bias) elif type(layer) == nn.Conv2D: new_weight = paddle.fill_constant( layer.weight.shape, layer.weight.dtype, value=0.7) layer.weight.set_value(new_weight) new_bias = paddle.fill_constant( layer.bias.shape, layer.bias.dtype, value=-0.2) layer.bias.set_value(new_bias) class TestLayerApply(unittest.TestCase): def test_apply_init_weight(self): with fluid.dygraph.guard(): net = LeNetDygraph() net.apply(init_weights) for layer in net.sublayers(): if type(layer) == nn.Linear: np.testing.assert_allclose(layer.weight.numpy(), 0.9) np.testing.assert_allclose(layer.bias.numpy(), -0.1) elif type(layer) == nn.Conv2D: np.testing.assert_allclose(layer.weight.numpy(), 0.7) np.testing.assert_allclose(layer.bias.numpy(), -0.2) if __name__ == '__main__': unittest.main()