/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #ifdef PADDLE_USE_MKLML #include #include #include #endif #ifdef PADDLE_USE_MKL #include #include #endif #ifdef PADDLE_USE_ATLAS extern "C" { #include #include } #endif #ifdef PADDLE_USE_OPENBLAS #include #include #endif #ifndef LAPACK_FOUND extern "C" { #include int LAPACKE_sgetrf(int matrix_layout, int m, int n, float* a, int lda, int* ipiv); int LAPACKE_dgetrf(int matrix_layout, int m, int n, double* a, int lda, int* ipiv); int LAPACKE_sgetri(int matrix_layout, int n, float* a, int lda, const int* ipiv); int LAPACKE_dgetri(int matrix_layout, int n, double* a, int lda, const int* ipiv); } #endif #include #include "paddle/framework/tensor.h" #include "paddle/platform/device_context.h" #include "paddle/platform/eigen.h" #include "paddle/platform/enforce.h" namespace paddle { namespace operators { namespace math { // Support continuous memory now // If transA = N, and transB = N // Then matrixA: M * K, matrixB: K * N matrixC : M * N // For more detailed info, please refer to // http://www.netlib.org/lapack/explore-html/d4/de2/sgemm_8f.html template void gemm(const CBLAS_TRANSPOSE transA, const CBLAS_TRANSPOSE transB, const int M, const int N, const int K, const T alpha, const T* A, const T* B, const T beta, T* C, platform::DeviceContext* context); // matrix multiply with continuous memory template void matmul(const framework::Tensor& matrix_a, bool trans_a, const framework::Tensor& matrix_b, bool trans_b, T alpha, framework::Tensor* matrix_out, T beta, platform::DeviceContext* context); template void Set(const int n, const T alpha, T* output, platform::DeviceContext* context) { framework::EigenVector::Type out(output, n); out.device(*(context->eigen_device())) = t.constant(T(alpha)); } template void RandUniform(const int n, const T min, const T max, T* output, platform::DeviceContext* context); template void RandGaussian(const int n, const T mean, const T std, T* output, platform::DeviceContext* context); } // namespace math } // namespace operators } // namespace paddle