# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and import math from typing import List from typing import Tuple from typing import Union import paddle from paddle import Tensor __all__ = [ 'get_window', ] def _cat(x: List[Tensor], data_type: str) -> Tensor: l = [paddle.to_tensor(_, data_type) for _ in x] return paddle.concat(l) def _acosh(x: Union[Tensor, float]) -> Tensor: if isinstance(x, float): return math.log(x + math.sqrt(x**2 - 1)) return paddle.log(x + paddle.sqrt(paddle.square(x) - 1)) def _extend(M: int, sym: bool) -> bool: """Extend window by 1 sample if needed for DFT-even symmetry. """ if not sym: return M + 1, True else: return M, False def _len_guards(M: int) -> bool: """Handle small or incorrect window lengths. """ if int(M) != M or M < 0: raise ValueError('Window length M must be a non-negative integer') return M <= 1 def _truncate(w: Tensor, needed: bool) -> Tensor: """Truncate window by 1 sample if needed for DFT-even symmetry. """ if needed: return w[:-1] else: return w def _general_gaussian(M: int, p, sig, sym: bool = True, dtype: str = 'float64') -> Tensor: """Compute a window with a generalized Gaussian shape. This function is consistent with scipy.signal.windows.general_gaussian(). """ if _len_guards(M): return paddle.ones((M, ), dtype=dtype) M, needs_trunc = _extend(M, sym) n = paddle.arange(0, M, dtype=dtype) - (M - 1.0) / 2.0 w = paddle.exp(-0.5 * paddle.abs(n / sig)**(2 * p)) return _truncate(w, needs_trunc) def _general_cosine(M: int, a: float, sym: bool = True, dtype: str = 'float64') -> Tensor: """Compute a generic weighted sum of cosine terms window. This function is consistent with scipy.signal.windows.general_cosine(). """ if _len_guards(M): return paddle.ones((M, ), dtype=dtype) M, needs_trunc = _extend(M, sym) fac = paddle.linspace(-math.pi, math.pi, M, dtype=dtype) w = paddle.zeros((M, ), dtype=dtype) for k in range(len(a)): w += a[k] * paddle.cos(k * fac) return _truncate(w, needs_trunc) def _general_hamming(M: int, alpha: float, sym: bool = True, dtype: str = 'float64') -> Tensor: """Compute a generalized Hamming window. This function is consistent with scipy.signal.windows.general_hamming() """ return _general_cosine(M, [alpha, 1. - alpha], sym, dtype=dtype) def _taylor(M: int, nbar=4, sll=30, norm=True, sym: bool = True, dtype: str = 'float64') -> Tensor: """Compute a Taylor window. The Taylor window taper function approximates the Dolph-Chebyshev window's constant sidelobe level for a parameterized number of near-in sidelobes. """ if _len_guards(M): return paddle.ones((M, ), dtype=dtype) M, needs_trunc = _extend(M, sym) # Original text uses a negative sidelobe level parameter and then negates # it in the calculation of B. To keep consistent with other methods we # assume the sidelobe level parameter to be positive. B = 10**(sll / 20) A = _acosh(B) / math.pi s2 = nbar**2 / (A**2 + (nbar - 0.5)**2) ma = paddle.arange(1, nbar, dtype=dtype) Fm = paddle.empty((nbar - 1, ), dtype=dtype) signs = paddle.empty_like(ma) signs[::2] = 1 signs[1::2] = -1 m2 = ma * ma for mi in range(len(ma)): numer = signs[mi] * paddle.prod(1 - m2[mi] / s2 / (A**2 + (ma - 0.5)**2)) if mi == 0: denom = 2 * paddle.prod(1 - m2[mi] / m2[mi + 1:]) elif mi == len(ma) - 1: denom = 2 * paddle.prod(1 - m2[mi] / m2[:mi]) else: denom = 2 * paddle.prod(1 - m2[mi] / m2[:mi]) * paddle.prod( 1 - m2[mi] / m2[mi + 1:]) Fm[mi] = numer / denom def W(n): return 1 + 2 * paddle.matmul( Fm.unsqueeze(0), paddle.cos(2 * math.pi * ma.unsqueeze(1) * (n - M / 2. + 0.5) / M)) w = W(paddle.arange(0, M, dtype=dtype)) # normalize (Note that this is not described in the original text [1]) if norm: scale = 1.0 / W((M - 1) / 2) w *= scale w = w.squeeze() return _truncate(w, needs_trunc) def _hamming(M: int, sym: bool = True, dtype: str = 'float64') -> Tensor: """Compute a Hamming window. The Hamming window is a taper formed by using a raised cosine with non-zero endpoints, optimized to minimize the nearest side lobe. """ return _general_hamming(M, 0.54, sym, dtype=dtype) def _hann(M: int, sym: bool = True, dtype: str = 'float64') -> Tensor: """Compute a Hann window. The Hann window is a taper formed by using a raised cosine or sine-squared with ends that touch zero. """ return _general_hamming(M, 0.5, sym, dtype=dtype) def _tukey(M: int, alpha=0.5, sym: bool = True, dtype: str = 'float64') -> Tensor: """Compute a Tukey window. The Tukey window is also known as a tapered cosine window. """ if _len_guards(M): return paddle.ones((M, ), dtype=dtype) if alpha <= 0: return paddle.ones((M, ), dtype=dtype) elif alpha >= 1.0: return hann(M, sym=sym) M, needs_trunc = _extend(M, sym) n = paddle.arange(0, M, dtype=dtype) width = int(alpha * (M - 1) / 2.0) n1 = n[0:width + 1] n2 = n[width + 1:M - width - 1] n3 = n[M - width - 1:] w1 = 0.5 * (1 + paddle.cos(math.pi * (-1 + 2.0 * n1 / alpha / (M - 1)))) w2 = paddle.ones(n2.shape, dtype=dtype) w3 = 0.5 * (1 + paddle.cos(math.pi * (-2.0 / alpha + 1 + 2.0 * n3 / alpha / (M - 1)))) w = paddle.concat([w1, w2, w3]) return _truncate(w, needs_trunc) def _kaiser(M: int, beta: float, sym: bool = True, dtype: str = 'float64') -> Tensor: """Compute a Kaiser window. The Kaiser window is a taper formed by using a Bessel function. """ raise NotImplementedError() def _gaussian(M: int, std: float, sym: bool = True, dtype: str = 'float64') -> Tensor: """Compute a Gaussian window. The Gaussian widows has a Gaussian shape defined by the standard deviation(std). """ if _len_guards(M): return paddle.ones((M, ), dtype=dtype) M, needs_trunc = _extend(M, sym) n = paddle.arange(0, M, dtype=dtype) - (M - 1.0) / 2.0 sig2 = 2 * std * std w = paddle.exp(-n**2 / sig2) return _truncate(w, needs_trunc) def _exponential(M: int, center=None, tau=1., sym: bool = True, dtype: str = 'float64') -> Tensor: """Compute an exponential (or Poisson) window. """ if sym and center is not None: raise ValueError("If sym==True, center must be None.") if _len_guards(M): return paddle.ones((M, ), dtype=dtype) M, needs_trunc = _extend(M, sym) if center is None: center = (M - 1) / 2 n = paddle.arange(0, M, dtype=dtype) w = paddle.exp(-paddle.abs(n - center) / tau) return _truncate(w, needs_trunc) def _triang(M: int, sym: bool = True, dtype: str = 'float64') -> Tensor: """Compute a triangular window. """ if _len_guards(M): return paddle.ones((M, ), dtype=dtype) M, needs_trunc = _extend(M, sym) n = paddle.arange(1, (M + 1) // 2 + 1, dtype=dtype) if M % 2 == 0: w = (2 * n - 1.0) / M w = paddle.concat([w, w[::-1]]) else: w = 2 * n / (M + 1.0) w = paddle.concat([w, w[-2::-1]]) return _truncate(w, needs_trunc) def _bohman(M: int, sym: bool = True, dtype: str = 'float64') -> Tensor: """Compute a Bohman window. The Bohman window is the autocorrelation of a cosine window. """ if _len_guards(M): return paddle.ones((M, ), dtype=dtype) M, needs_trunc = _extend(M, sym) fac = paddle.abs(paddle.linspace(-1, 1, M, dtype=dtype)[1:-1]) w = (1 - fac) * paddle.cos(math.pi * fac) + 1.0 / math.pi * paddle.sin( math.pi * fac) w = _cat([0, w, 0], dtype) return _truncate(w, needs_trunc) def _blackman(M: int, sym: bool = True, dtype: str = 'float64') -> Tensor: """Compute a Blackman window. The Blackman window is a taper formed by using the first three terms of a summation of cosines. It was designed to have close to the minimal leakage possible. It is close to optimal, only slightly worse than a Kaiser window. """ return _general_cosine(M, [0.42, 0.50, 0.08], sym, dtype=dtype) def _cosine(M: int, sym: bool = True, dtype: str = 'float64') -> Tensor: """Compute a window with a simple cosine shape. """ if _len_guards(M): return paddle.ones((M, ), dtype=dtype) M, needs_trunc = _extend(M, sym) w = paddle.sin(math.pi / M * (paddle.arange(0, M, dtype=dtype) + .5)) return _truncate(w, needs_trunc) def get_window(window: Union[str, Tuple[str, float]], win_length: int, fftbins: bool = True, dtype: str = 'float64') -> Tensor: """Return a window of a given length and type. Args: window (Union[str, Tuple[str, float]]): The window function applied to the signal before the Fourier transform. Supported window functions: 'hamming', 'hann', 'kaiser', 'gaussian', 'exponential', 'triang', 'bohman', 'blackman', 'cosine', 'tukey', 'taylor'. win_length (int): Number of samples. fftbins (bool, optional): If True, create a "periodic" window. Otherwise, create a "symmetric" window, for use in filter design. Defaults to True. dtype (str, optional): The data type of the return window. Defaults to 'float64'. Returns: Tensor: The window represented as a tensor. """ sym = not fftbins args = () if isinstance(window, tuple): winstr = window[0] if len(window) > 1: args = window[1:] elif isinstance(window, str): if window in ['gaussian', 'exponential']: raise ValueError("The '" + window + "' window needs one or " "more parameters -- pass a tuple.") else: winstr = window else: raise ValueError("%s as window type is not supported." % str(type(window))) try: winfunc = eval('_' + winstr) except NameError as e: raise ValueError("Unknown window type.") from e params = (win_length, ) + args kwargs = {'sym': sym} return winfunc(*params, dtype=dtype, **kwargs)