# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from eager_op_test import OpTest, convert_float_to_uint16, skip_check_grad_ci import paddle from paddle.fluid import core class ElementwiseMulOp(OpTest): def init_kernel_type(self): self.use_mkldnn = False def setUp(self): self.op_type = "elementwise_mul" self.prim_op_type = "prim" self.python_api = paddle.multiply self.public_python_api = paddle.multiply self.dtype = np.float64 self.axis = -1 self.init_dtype() self.init_input_output() self.init_kernel_type() self.init_axis() self.if_enable_cinn() self.inputs = { 'X': OpTest.np_dtype_to_fluid_dtype(self.x), 'Y': OpTest.np_dtype_to_fluid_dtype(self.y), } self.outputs = {'Out': self.out} self.attrs = {'axis': self.axis, 'use_mkldnn': self.use_mkldnn} def test_check_output(self): # TODO(wangzhongpu): support mkldnn op in dygraph mode self.check_output(check_dygraph=(not self.use_mkldnn)) def test_check_grad_normal(self): # TODO(wangzhongpu): support mkldnn op in dygraph mode self.check_grad( ['X', 'Y'], 'Out', check_dygraph=(not self.use_mkldnn), check_prim=True, ) def test_check_grad_ingore_x(self): # TODO(wangzhongpu): support mkldnn op in dygraph mode self.check_grad( ['Y'], 'Out', no_grad_set=set("X"), check_dygraph=(not self.use_mkldnn), check_prim=True, ) def test_check_grad_ingore_y(self): # TODO(wangzhongpu): support mkldnn op in dygraph mode self.check_grad( ['X'], 'Out', no_grad_set=set('Y'), check_dygraph=(not self.use_mkldnn), check_prim=True, ) def init_input_output(self): self.x = np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype) self.y = np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype) self.out = np.multiply(self.x, self.y) def init_dtype(self): pass def init_axis(self): pass def if_enable_cinn(self): pass class TestComplexElementwiseMulOpWithCheckGrad(ElementwiseMulOp): def setUp(self): self.op_type = "elementwise_mul" self.python_api = paddle.multiply self.public_python_api = paddle.multiply self.dtype = np.complex128 self.axis = -1 self.init_dtype() self.init_input_output() self.init_kernel_type() self.init_axis() self.if_enable_cinn() self.inputs = { 'X': OpTest.np_dtype_to_fluid_dtype(self.x), 'Y': OpTest.np_dtype_to_fluid_dtype(self.y), } self.outputs = {'Out': self.out} self.attrs = {'axis': self.axis} def init_input_output(self): self.x = np.array([3 + 4j, 1 + 2j]).astype(self.dtype) self.y = np.array([3 + 4j, 5 + 6j]).astype(self.dtype) self.out = np.multiply(self.x, self.y) def if_enable_cinn(self): self.enable_cinn = False def test_check_grad_normal(self): self.check_grad( ['X', 'Y'], 'Out', ) def test_check_grad_ingore_x(self): self.check_grad( ['Y'], 'Out', no_grad_set=set("X"), ) def test_check_grad_ingore_y(self): self.check_grad( ['X'], 'Out', no_grad_set=set('Y'), ) class TestElementwiseMulOp_ZeroDim1(ElementwiseMulOp): def init_input_output(self): self.x = np.random.uniform(0.1, 1, []).astype(self.dtype) self.y = np.random.uniform(0.1, 1, []).astype(self.dtype) self.out = np.multiply(self.x, self.y) class TestElementwiseMulOp_ZeroDim2(ElementwiseMulOp): def init_input_output(self): self.x = np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype) self.y = np.random.uniform(0.1, 1, []).astype(self.dtype) self.out = np.multiply(self.x, self.y) class TestElementwiseMulOp_ZeroDim3(ElementwiseMulOp): def init_input_output(self): self.x = np.random.uniform(0.1, 1, []).astype(self.dtype) self.y = np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype) self.out = np.multiply(self.x, self.y) class TestBF16ElementwiseMulOp(OpTest): def setUp(self): self.op_type = "elementwise_mul" self.prim_op_type = "prim" self.python_api = paddle.multiply self.public_python_api = paddle.multiply self.dtype = np.uint16 self.x = np.random.uniform(0.1, 1, [13, 17]).astype(np.float32) self.y = np.random.uniform(0.1, 1, [13, 17]).astype(np.float32) self.out = np.multiply(self.x, self.y) self.axis = -1 self.inputs = { 'X': OpTest.np_dtype_to_fluid_dtype( convert_float_to_uint16(self.x) ), 'Y': OpTest.np_dtype_to_fluid_dtype( convert_float_to_uint16(self.y) ), } self.outputs = {'Out': convert_float_to_uint16(self.out)} self.attrs = {'axis': self.axis, 'use_mkldnn': False} self.if_enable_cinn() def test_check_output(self): self.check_output() def test_check_grad_normal(self): self.check_grad(['X', 'Y'], 'Out', check_prim=True) def test_check_grad_ingore_x(self): self.check_grad( ['Y'], 'Out', no_grad_set=set("X"), check_prim=True, ) def test_check_grad_ingore_y(self): self.check_grad( ['X'], 'Out', no_grad_set=set('Y'), check_prim=True, ) def if_enable_cinn(self): self.enable_cinn = False @skip_check_grad_ci( reason="[skip shape check] Use y_shape(1) to test broadcast." ) class TestElementwiseMulOp_scalar(ElementwiseMulOp): def setUp(self): self.op_type = "elementwise_mul" self.prim_op_type = "prim" self.python_api = paddle.multiply self.public_python_api = paddle.multiply self.inputs = { 'X': np.random.rand(10, 3, 4).astype(np.float64), 'Y': np.random.rand(1).astype(np.float64), } self.outputs = {'Out': self.inputs['X'] * self.inputs['Y']} self.init_kernel_type() class TestElementwiseMulOp_Vector(ElementwiseMulOp): def setUp(self): self.op_type = "elementwise_mul" self.prim_op_type = "prim" self.python_api = paddle.multiply self.public_python_api = paddle.multiply self.inputs = { 'X': np.random.random((100,)).astype("float64"), 'Y': np.random.random((100,)).astype("float64"), } self.outputs = {'Out': np.multiply(self.inputs['X'], self.inputs['Y'])} self.init_kernel_type() class ElementwiseMulOp_broadcast(OpTest): def init_kernel_type(self): self.use_mkldnn = False def setUp(self): self.op_type = "elementwise_mul" self.prim_op_type = "prim" self.python_api = paddle.multiply self.public_python_api = paddle.multiply self.init_dtype() self.init_kernel_type() self.init_axis() self.init_input_attr_output() self.if_check_prim() self.if_check_dygraph() def test_check_output(self): self.check_output( check_dygraph=self.check_dygraph, check_prim=self.check_prim ) def test_check_grad_normal(self): self.check_grad( ['X', 'Y'], 'Out', check_dygraph=self.check_dygraph, check_prim=self.check_prim, ) def test_check_grad_ingore_x(self): self.check_grad( ['Y'], 'Out', no_grad_set=set("X"), check_dygraph=self.check_dygraph, check_prim=self.check_prim, ) def test_check_grad_ingore_y(self): self.check_grad( ['X'], 'Out', no_grad_set=set('Y'), check_dygraph=self.check_dygraph, check_prim=self.check_prim, ) def init_input_attr_output(self): self.x = np.random.uniform(0.1, 1, [13, 17, 1]).astype(self.dtype) self.y = np.random.uniform(0.1, 1, [17, 17]).astype(self.dtype) self.out = np.multiply(self.x, self.y) self.inputs = { 'X': OpTest.np_dtype_to_fluid_dtype(self.x), 'Y': OpTest.np_dtype_to_fluid_dtype(self.y), } self.outputs = {'Out': self.out} self.attrs = {'axis': self.axis, 'use_mkldnn': self.use_mkldnn} def init_dtype(self): self.dtype = np.float64 def init_axis(self): self.axis = -1 def if_check_prim(self): self.check_prim = self.axis == -1 def if_check_dygraph(self): self.check_dygraph = (not self.use_mkldnn) and (self.axis == -1) class TestElementwiseMulOp_broadcast_0(ElementwiseMulOp_broadcast): def init_input_attr_output(self): self.x = np.random.rand(100, 2, 3).astype(self.dtype) self.y = np.random.rand(100).astype(self.dtype) self.out = self.x * self.y.reshape(100, 1, 1) self.inputs = { 'X': OpTest.np_dtype_to_fluid_dtype(self.x), 'Y': OpTest.np_dtype_to_fluid_dtype(self.y), } self.outputs = {'Out': self.out} self.attrs = {'axis': self.axis, 'use_mkldnn': self.use_mkldnn} def init_axis(self): self.axis = 0 class TestElementwiseMulOp_broadcast_1(ElementwiseMulOp_broadcast): def init_input_attr_output(self): self.inputs = { 'X': np.random.rand(2, 100, 3).astype(np.float64), 'Y': np.random.rand(100).astype(np.float64), } self.attrs = {'axis': self.axis} self.outputs = { 'Out': self.inputs['X'] * self.inputs['Y'].reshape(1, 100, 1) } def init_axis(self): self.axis = 1 class TestElementwiseMulOp_broadcast_2(ElementwiseMulOp_broadcast): def init_input_attr_output(self): self.inputs = { 'X': np.random.rand(2, 3, 100).astype(np.float64), 'Y': np.random.rand(100).astype(np.float64), } self.attrs = {'axis': self.axis} self.outputs = { 'Out': self.inputs['X'] * self.inputs['Y'].reshape(1, 1, 100) } class TestElementwiseMulOp_broadcast_3(ElementwiseMulOp_broadcast): def init_input_attr_output(self): self.inputs = { 'X': np.random.rand(2, 10, 12, 3).astype(np.float64), 'Y': np.random.rand(10, 12).astype(np.float64), } self.attrs = {'axis': self.axis} self.outputs = { 'Out': self.inputs['X'] * self.inputs['Y'].reshape(1, 10, 12, 1) } def init_axis(self): self.axis = 1 class TestElementwiseMulOp_broadcast_4(ElementwiseMulOp_broadcast): def init_input_attr_output(self): self.inputs = { 'X': np.random.rand(10, 2, 11).astype(np.float64), 'Y': np.random.rand(10, 1, 11).astype(np.float64), } self.attrs = {'axis': self.axis} self.outputs = {'Out': self.inputs['X'] * self.inputs['Y']} class TestElementwiseMulOp_broadcast_5(ElementwiseMulOp_broadcast): def init_input_attr_output(self): self.inputs = { 'X': np.random.rand(10, 4, 2, 3).astype(np.float64), 'Y': np.random.rand(10, 4, 1, 3).astype(np.float64), } self.attrs = {'axis': self.axis} self.outputs = {'Out': self.inputs['X'] * self.inputs['Y']} @unittest.skipIf( not core.is_compiled_with_cuda(), "core is not compiled with CUDA" ) class TestElementwiseMulOpFp16(ElementwiseMulOp): def init_dtype(self): self.dtype = np.float16 def if_enable_cinn(self): pass def test_check_output(self): # TODO(wangzhongpu): support mkldnn op in dygraph mode self.check_output(check_dygraph=(not self.use_mkldnn)) def test_check_grad_normal(self): # TODO(wangzhongpu): support mkldnn op in dygraph mode self.check_grad( ['X', 'Y'], 'Out', check_dygraph=(not self.use_mkldnn), check_prim=True, ) def test_check_grad_ingore_x(self): # TODO(wangzhongpu): support mkldnn op in dygraph mode self.check_grad( ['Y'], 'Out', no_grad_set=set("X"), check_dygraph=(not self.use_mkldnn), check_prim=True, ) def test_check_grad_ingore_y(self): # TODO(wangzhongpu): support mkldnn op in dygraph mode self.check_grad( ['X'], 'Out', no_grad_set=set('Y'), check_dygraph=(not self.use_mkldnn), check_prim=True, ) class TestElementwiseMulOp_commonuse_1(ElementwiseMulOp): def setUp(self): self.op_type = "elementwise_mul" self.prim_op_type = "prim" self.python_api = paddle.multiply self.public_python_api = paddle.multiply self.inputs = { 'X': np.random.rand(2, 3, 100).astype(np.float64), 'Y': np.random.rand(1, 1, 100).astype(np.float64), } self.outputs = {'Out': self.inputs['X'] * self.inputs['Y']} self.init_kernel_type() class TestElementwiseMulOp_commonuse_2(ElementwiseMulOp): def setUp(self): self.op_type = "elementwise_mul" self.prim_op_type = "prim" self.python_api = paddle.multiply self.public_python_api = paddle.multiply self.inputs = { 'X': np.random.rand(30, 3, 1, 5).astype(np.float64), 'Y': np.random.rand(30, 1, 4, 1).astype(np.float64), } self.outputs = {'Out': self.inputs['X'] * self.inputs['Y']} self.init_kernel_type() class TestElementwiseMulOp_xsize_lessthan_ysize(ElementwiseMulOp): def setUp(self): self.op_type = "elementwise_mul" self.prim_op_type = "prim" self.python_api = paddle.multiply self.public_python_api = paddle.multiply self.inputs = { 'X': np.random.rand(10, 10).astype(np.float64), 'Y': np.random.rand(2, 2, 10, 10).astype(np.float64), } self.attrs = {'axis': 2} self.outputs = { 'Out': self.inputs['X'].reshape(1, 1, 10, 10) * self.inputs['Y'] } self.init_kernel_type() class TestComplexElementwiseMulOp(OpTest): def setUp(self): self.op_type = "elementwise_mul" self.python_api = paddle.multiply self.init_base_dtype() self.init_input_output() self.init_grad_input_output() self.inputs = { 'X': OpTest.np_dtype_to_fluid_dtype(self.x), 'Y': OpTest.np_dtype_to_fluid_dtype(self.y), } self.attrs = {'axis': -1, 'use_mkldnn': False} self.outputs = {'Out': self.out} def init_base_dtype(self): self.dtype = np.float64 def init_input_output(self): self.x = np.random.random((2, 3, 4, 5)).astype( self.dtype ) + 1j * np.random.random((2, 3, 4, 5)).astype(self.dtype) self.y = np.random.random((2, 3, 4, 5)).astype( self.dtype ) + 1j * np.random.random((2, 3, 4, 5)).astype(self.dtype) self.out = self.x * self.y def init_grad_input_output(self): self.grad_out = np.ones((2, 3, 4, 5), self.dtype) + 1j * np.ones( (2, 3, 4, 5), self.dtype ) self.grad_x = self.grad_out * np.conj(self.y) self.grad_y = self.grad_out * np.conj(self.x) def test_check_output(self): self.check_output() def test_check_grad_normal(self): self.check_grad( ['X', 'Y'], 'Out', user_defined_grads=[self.grad_x, self.grad_y], user_defined_grad_outputs=[self.grad_out], ) def test_check_grad_ingore_x(self): self.check_grad( ['Y'], 'Out', no_grad_set=set("X"), user_defined_grads=[self.grad_y], user_defined_grad_outputs=[self.grad_out], ) def test_check_grad_ingore_y(self): self.check_grad( ['X'], 'Out', no_grad_set=set('Y'), user_defined_grads=[self.grad_x], user_defined_grad_outputs=[self.grad_out], ) class TestRealComplexElementwiseMulOp(TestComplexElementwiseMulOp): def init_input_output(self): self.x = np.random.random((2, 3, 4, 5)).astype(self.dtype) self.y = np.random.random((2, 3, 4, 5)).astype( self.dtype ) + 1j * np.random.random((2, 3, 4, 5)).astype(self.dtype) self.out = self.x * self.y def init_grad_input_output(self): self.grad_out = np.ones((2, 3, 4, 5), self.dtype) + 1j * np.ones( (2, 3, 4, 5), self.dtype ) self.grad_x = np.real(self.grad_out * np.conj(self.y)) self.grad_y = self.grad_out * np.conj(self.x) class TestElementwiseMulop(unittest.TestCase): def test_dygraph_mul(self): paddle.disable_static() np_a = np.random.random((2, 3, 4)).astype(np.float32) np_b = np.random.random((2, 3, 4)).astype(np.float32) tensor_a = paddle.to_tensor(np_a, dtype="float32") tensor_b = paddle.to_tensor(np_b, dtype="float32") # normal case: nparray * tenor expect_out = np_a * np_b actual_out = np_a * tensor_b np.testing.assert_allclose(actual_out, expect_out) # normal case: tensor * nparray actual_out = tensor_a * np_b np.testing.assert_allclose(actual_out, expect_out) paddle.enable_static() if __name__ == '__main__': paddle.enable_static() unittest.main()