from paddle.trainer_config_helpers import * settings(batch_size=1000, learning_rate=1e-5) data = data_layer(name='data', size=2304, height=48, width=48) conv = img_conv_layer( input=data, filter_size=3, num_channels=1, num_filters=16, padding=1, act=LinearActivation(), bias_attr=True) maxout = maxout_layer(input=conv, num_channels=16, groups=2) pool = img_pool_layer( input=maxout, num_channels=8, pool_size=2, stride=2, pool_type=MaxPooling()) conv2 = img_conv_layer( input=pool, filter_size=3, num_channels=8, num_filters=128, padding=1, act=LinearActivation(), bias_attr=True) maxout2 = maxout_layer(input=conv2, num_channels=128, groups=4) block = block_expand_layer( input=maxout2, num_channels=32, stride_x=1, stride_y=1, block_x=1, block_y=6) fc = fc_layer(input=block, size=384, bias_attr=False) outputs(fc)