// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include #include #include #ifdef PADDLE_WITH_CUDA #include #include #endif // PADDLE_WITH_CUDA #ifdef PADDLE_WITH_HIP #include #include // NOLINT #endif #if !defined(_WIN32) #define PADDLE_ALIGN(x) __attribute__((aligned(x))) #else #define PADDLE_ALIGN(x) __declspec(align(x)) #endif #if (defined(__CUDACC__) || defined(__HIPCC__)) #define HOSTDEVICE __host__ __device__ #define DEVICE __device__ #define HOST __host__ #else #define HOSTDEVICE #define DEVICE #define HOST #endif #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) #define PADDLE_WITH_CUDA_OR_HIP_COMPLEX64 #endif #include "complex128.h" // NOLINT namespace paddle { namespace platform { struct PADDLE_ALIGN(8) complex64 { public: float real; float imag; complex64() = default; complex64(const complex64& o) = default; complex64& operator=(const complex64& o) = default; complex64(complex64&& o) = default; complex64& operator=(complex64&& o) = default; ~complex64() = default; HOSTDEVICE complex64(float real, float imag) : real(real), imag(imag) {} #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) HOSTDEVICE inline explicit complex64(const thrust::complex& c) { real = c.real(); imag = c.imag(); } HOSTDEVICE inline explicit operator thrust::complex() const { return thrust::complex(real, imag); } #ifdef PADDLE_WITH_HIP HOSTDEVICE inline explicit operator hipFloatComplex() const { return make_hipFloatComplex(real, imag); } #else HOSTDEVICE inline explicit operator cuFloatComplex() const { return make_cuFloatComplex(real, imag); } #endif #endif HOSTDEVICE complex64(const float& val) : real(val), imag(0) {} HOSTDEVICE complex64(const double& val) : real(static_cast(val)), imag(0) {} HOSTDEVICE complex64(const int& val) : real(static_cast(val)), imag(0) {} HOSTDEVICE complex64(const int64_t& val) : real(static_cast(val)), imag(0) {} HOSTDEVICE complex64(const complex128& val) : real(static_cast(val.real)), imag(static_cast(val.imag)) {} HOSTDEVICE inline explicit operator std::complex() { return static_cast>(std::complex(real, imag)); } template HOSTDEVICE inline explicit complex64(const T& val) : real(complex64(static_cast(val)).real) {} HOSTDEVICE complex64(const std::complex val) : real(val.real()), imag(val.imag()) {} HOSTDEVICE inline complex64& operator=(bool b) { real = b ? 1 : 0; imag = 0; return *this; } HOSTDEVICE inline complex64& operator=(int8_t val) { real = static_cast(val); imag = 0; return *this; } HOSTDEVICE inline complex64& operator=(uint8_t val) { real = static_cast(val); imag = 0; return *this; } HOSTDEVICE inline complex64& operator=(int16_t val) { real = static_cast(val); imag = 0; return *this; } HOSTDEVICE inline complex64& operator=(uint16_t val) { real = static_cast(val); imag = 0; return *this; } HOSTDEVICE inline complex64& operator=(int32_t val) { real = static_cast(val); imag = 0; return *this; } HOSTDEVICE inline complex64& operator=(uint32_t val) { real = static_cast(val); imag = 0; return *this; } HOSTDEVICE inline complex64& operator=(int64_t val) { real = static_cast(val); imag = 0; return *this; } HOSTDEVICE inline complex64& operator=(uint64_t val) { real = static_cast(val); imag = 0; return *this; } HOSTDEVICE inline complex64& operator=(float val) { real = val; imag = 0; return *this; } HOSTDEVICE inline complex64& operator=(double val) { real = static_cast(val); imag = 0; return *this; } HOSTDEVICE inline operator float() const { return this->real; } HOSTDEVICE inline explicit operator bool() const { return static_cast(this->real) || static_cast(this->imag); } HOSTDEVICE inline explicit operator int8_t() const { return static_cast(this->real); } HOSTDEVICE inline explicit operator uint8_t() const { return static_cast(this->real); } HOSTDEVICE inline explicit operator int16_t() const { return static_cast(this->real); } HOSTDEVICE inline explicit operator uint16_t() const { return static_cast(this->real); } HOSTDEVICE inline explicit operator int32_t() const { return static_cast(this->real); } HOSTDEVICE inline explicit operator uint32_t() const { return static_cast(this->real); } HOSTDEVICE inline explicit operator int64_t() const { return static_cast(this->real); } HOSTDEVICE inline explicit operator uint64_t() const { return static_cast(this->real); } HOSTDEVICE inline explicit operator double() const { return static_cast(this->real); } HOSTDEVICE inline operator complex128() const { return complex128(static_cast(this->real), static_cast(this->imag)); } }; HOSTDEVICE inline complex64 operator+(const complex64& a, const complex64& b) { #if defined(PADDLE_WITH_CUDA_OR_HIP_COMPLEX64) && \ (defined(__CUDA_ARCH__) || defined(__HIPCC__)) return complex64(thrust::complex(a.real, a.imag) + thrust::complex(b.real, b.imag)); #else return complex64(a.real + b.real, a.imag + b.imag); #endif } HOSTDEVICE inline complex64 operator-(const complex64& a, const complex64& b) { #if defined(PADDLE_WITH_CUDA_OR_HIP_COMPLEX64) && \ (defined(__CUDA_ARCH__) || defined(__HIPCC__)) return complex64(thrust::complex(a.real, a.imag) - thrust::complex(b.real, b.imag)); #else return complex64(a.real - b.real, a.imag - b.imag); #endif } HOSTDEVICE inline complex64 operator*(const complex64& a, const complex64& b) { #if defined(PADDLE_WITH_CUDA_OR_HIP_COMPLEX64) && \ (defined(__CUDA_ARCH__) || defined(__HIPCC__)) return complex64(thrust::complex(a.real, a.imag) * thrust::complex(b.real, b.imag)); #else return complex64(a.real * b.real - a.imag * b.imag, a.imag * b.real + b.imag * a.real); #endif } HOSTDEVICE inline complex64 operator/(const complex64& a, const complex64& b) { #if defined(PADDLE_WITH_CUDA_OR_HIP_COMPLEX64) && \ (defined(__CUDA_ARCH__) || defined(__HIPCC__)) return complex64(thrust::complex(a.real, a.imag) / thrust::complex(b.real, b.imag)); #else float denominator = b.real * b.real + b.imag * b.imag; return complex64((a.real * b.real + a.imag * b.imag) / denominator, (a.imag * b.real - a.real * b.imag) / denominator); #endif } HOSTDEVICE inline complex64 operator-(const complex64& a) { #if defined(PADDLE_WITH_CUDA_OR_HIP_COMPLEX64) && \ (defined(__CUDA_ARCH__) || defined(__HIPCC__)) return complex64(-thrust::complex(a.real, a.imag)); #else complex64 res; res.real = -a.real; res.imag = -a.imag; return res; #endif } HOSTDEVICE inline complex64& operator+=(complex64& a, // NOLINT const complex64& b) { #if defined(PADDLE_WITH_CUDA_OR_HIP_COMPLEX64) && \ (defined(__CUDA_ARCH__) || defined(__HIPCC__)) a = complex64(thrust::complex(a.real, a.imag) += thrust::complex(b.real, b.imag)); return a; #else a.real += b.real; a.imag += b.imag; return a; #endif } HOSTDEVICE inline complex64& operator-=(complex64& a, // NOLINT const complex64& b) { #if defined(PADDLE_WITH_CUDA_OR_HIP_COMPLEX64) && \ (defined(__CUDA_ARCH__) || defined(__HIPCC__)) a = complex64(thrust::complex(a.real, a.imag) -= thrust::complex(b.real, b.imag)); return a; #else a.real -= b.real; a.imag -= b.imag; return a; #endif } HOSTDEVICE inline complex64& operator*=(complex64& a, // NOLINT const complex64& b) { #if defined(PADDLE_WITH_CUDA_OR_HIP_COMPLEX64) && \ (defined(__CUDA_ARCH__) || defined(__HIPCC__)) a = complex64(thrust::complex(a.real, a.imag) *= thrust::complex(b.real, b.imag)); return a; #else a.real = a.real * b.real - a.imag * b.imag; a.imag = a.imag * b.real + b.imag * a.real; return a; #endif } HOSTDEVICE inline complex64& operator/=(complex64& a, // NOLINT const complex64& b) { #if defined(PADDLE_WITH_CUDA_OR_HIP_COMPLEX64) && \ (defined(__CUDA_ARCH__) || defined(__HIPCC__)) a = complex64(thrust::complex(a.real, a.imag) /= thrust::complex(b.real, b.imag)); return a; #else float denominator = b.real * b.real + b.imag * b.imag; a.real = (a.real * b.real + a.imag * b.imag) / denominator; a.imag = (a.imag * b.real - a.real * b.imag) / denominator; return a; #endif } HOSTDEVICE inline complex64 raw_uint16_to_complex64(uint16_t a) { complex64 res; res.real = a; return res; } HOSTDEVICE inline bool operator==(const complex64& a, const complex64& b) { return a.real == b.real && a.imag == b.imag; } HOSTDEVICE inline bool operator!=(const complex64& a, const complex64& b) { return a.real != b.real || a.imag != b.imag; } HOSTDEVICE inline bool operator<(const complex64& a, const complex64& b) { return static_cast(a.real) < static_cast(b.real); } HOSTDEVICE inline bool operator<=(const complex64& a, const complex64& b) { return static_cast(a.real) <= static_cast(b.real); } HOSTDEVICE inline bool operator>(const complex64& a, const complex64& b) { return static_cast(a.real) > static_cast(b.real); } HOSTDEVICE inline bool operator>=(const complex64& a, const complex64& b) { return static_cast(a.real) >= static_cast(b.real); } HOSTDEVICE inline bool(isnan)(const complex64& a) { #if defined(PADDLE_WITH_CUDA) && defined(__CUDA_ARCH__) // __isnanf not supported on HIP platform return __isnanf(a.real) || __isnanf(a.imag); #else return std::isnan(a.real) || std::isnan(a.imag); #endif } HOSTDEVICE inline bool(isinf)(const complex64& a) { #if defined(PADDLE_WITH_CUDA) && defined(__CUDA_ARCH__) // __isinff not supported on HIP platform return __isinff(a.real) || __isinff(a.imag); #else return std::isinf(a.real) || std::isinf(a.imag); #endif } HOSTDEVICE inline bool(isfinite)(const complex64& a) { return !((isnan)(a)) && !((isinf)(a)); } HOSTDEVICE inline float(abs)(const complex64& a) { #if defined(PADDLE_WITH_CUDA_OR_HIP_COMPLEX64) && \ (defined(__CUDA_ARCH__) || defined(__HIPCC__)) return complex64(thrust::abs(thrust::complex(a.real, a.imag))); #else return std::abs(std::complex(a.real, a.imag)); #endif } HOSTDEVICE inline complex64(pow)(const complex64& a, const complex64& b) { #if defined(PADDLE_WITH_CUDA_OR_HIP_COMPLEX64) && \ (defined(__CUDA_ARCH__) || defined(__HIPCC__)) return complex64(thrust::pow(thrust::complex(a.real, a.imag), thrust::complex(b.real, b.imag))); #else return std::pow(std::complex(a), std::complex(b)); #endif } HOSTDEVICE inline complex64(sqrt)(const complex64& a) { #if defined(PADDLE_WITH_CUDA_OR_HIP_COMPLEX64) && \ (defined(__CUDA_ARCH__) || defined(__HIPCC__)) return complex64(thrust::sqrt(thrust::complex(a.real, a.imag))); #else return std::sqrt(std::complex(a)); #endif } HOSTDEVICE inline complex64(tanh)(const complex64& a) { #if defined(PADDLE_WITH_CUDA_OR_HIP_COMPLEX64) && \ (defined(__CUDA_ARCH__) || defined(__HIPCC__)) return complex64(thrust::tanh(thrust::complex(a.real, a.imag))); #else return std::tanh(std::complex(a)); #endif } HOSTDEVICE inline complex64(log)(const complex64& a) { #if defined(PADDLE_WITH_CUDA_OR_HIP_COMPLEX64) && \ (defined(__CUDA_ARCH__) || defined(__HIPCC__)) return complex64(thrust::log(thrust::complex(a.real, a.imag))); #else return std::log(std::complex(a)); #endif } inline std::ostream& operator<<(std::ostream& os, const complex64& a) { os << "real:" << a.real << " imag:" << a.imag; return os; } } // namespace platform } // namespace paddle namespace std { template <> struct is_pod { static const bool value = is_trivial::value && is_standard_layout::value; }; template <> struct is_floating_point : std::integral_constant< bool, std::is_same::type>::value> {}; template <> struct is_signed { static const bool value = false; }; template <> struct is_unsigned { static const bool value = false; }; inline bool isnan(const paddle::platform::complex64& a) { return paddle::platform::isnan(a); } inline bool isinf(const paddle::platform::complex64& a) { return paddle::platform::isinf(a); } template <> struct numeric_limits { static const bool is_specialized = false; static const bool is_signed = false; static const bool is_integer = false; static const bool is_exact = false; static const bool has_infinity = false; static const bool has_quiet_NaN = false; static const bool has_signaling_NaN = false; static const float_denorm_style has_denorm = denorm_absent; static const bool has_denorm_loss = false; static const std::float_round_style round_style = std::round_toward_zero; static const bool is_iec559 = false; static const bool is_bounded = false; static const bool is_modulo = false; static const int digits = 0; static const int digits10 = 0; static const int max_digits10 = 0; static const int radix = 0; static const int min_exponent = 0; static const int min_exponent10 = 0; static const int max_exponent = 0; static const int max_exponent10 = 0; static const bool traps = false; static const bool tinyness_before = false; static paddle::platform::complex64(min)() { return paddle::platform::complex64(0.0, 0.0); } static paddle::platform::complex64 lowest() { return paddle::platform::complex64(0.0, 0.0); } static paddle::platform::complex64(max)() { return paddle::platform::complex64(0.0, 0.0); } static paddle::platform::complex64 epsilon() { return paddle::platform::complex64(0.0, 0.0); } static paddle::platform::complex64 round_error() { return paddle::platform::complex64(0.0, 0.0); } static paddle::platform::complex64 infinity() { return paddle::platform::complex64(0.0, 0.0); } static paddle::platform::complex64 quiet_NaN() { return paddle::platform::complex64(0.0, 0.0); } static paddle::platform::complex64 signaling_NaN() { return paddle::platform::complex64(0.0, 0.0); } static paddle::platform::complex64 denorm_min() { return paddle::platform::complex64(0.0, 0.0); } }; } // namespace std #define MKL_Complex8 paddle::platform::complex64